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Model interpretability has been recognized to y a key role in 
practical data mining. Interpretable models provide signific - 
sights on data and model behaviors and may conv e end-users to 
employ certain models. In return for these advantages, however, 
there is generally a sacrifice in accuracy, i.e., flexibility of model 
representation (e.g., linear, rule-based, etc.) and model complex- 
ity needs to be restricted in order for users to be able to under- stand 
the results. This paper proposes oblique treed sparse additive 
models (OT-SpAMs). Our main focus is on develo  a mod- 
el which sacrifices a certain degree of interpretability for accuracy 
but achieves entirely sufficient accuracy with such fully non-linear 
models as kernel support vector machines (SVMs). OT-SpAMs are 
instances of region-specific predictive models. They divide fea- 
ture spaces into regions with sparse oblique tree splitting and as- 
sign local sparse additive experts to individual regions. In order to 
maintain OT-SpAM interpretability, we have to keep the overall 
model structure simple, and this produces simultaneous model se- 
lection issues for sparse oblique region structures and sparse local 
experts. We address this problem by extending factorized asymp- 
totic Bayesian inference. We demonstrate, on simulation, bench- 
mark, and real world datasets that, in terms of accuracy, OT-SpAMs 
outperform state-of-the-art interpretable models and perform com- 
petitively with kernel SVMs, while still providing results that are 
highly understandable. 

decision trees, are still preferred in such applications as market- ing, 
medical ytics, and science, for which understanding phe- 
nomena behind data are more important for end users than sim- ply 
accurate prediction. In return for advantages in interpretability, 
however, there is generally a sacrifice in accuracy s e flexibility 
of model representation (e.g., linear, rule-based, etc.) and model 
complexity need to be restricted in order for users to be able to 
understand the results. 

There are two key concepts in discussions on the issue of model 
interpretability: 1) model representation and 2) model complexi- 
ty. For the former, linear models (e.g., generalized linear mod- els 
(G ) [31]) and decision trees (e.g., classification and re- 
gression tree (CART) [4]) may be considered to be the most in- 
terpretable. Although the simplicity of their model representations 
contributes significantly to end-user understanding, it also limits 
their predictive ability. For the latter, feature sparseness is a key 
concept in improving interpretability for linear models; i.e., select- 
ing a small number of key features makes understanding models a 
lot easier. Also, whiles deep rule chains for decision trees might 
improve predictive accuracy for complex data, it makes the rule 
structures hard to understand. The trade-off between accuracy and 
interpretability remains an import sue. 

This paper proposes oblique treed sparse additive models (OT- 
SpAMs), which provide more flexible representation than linear 
models and decision trees (and, therefore, sacrifice a certain de- 
gree of interpretability.) While offering the same accuracy as that 
of such fully non-parametric models as kernel support vector ma- 
chines (KSVMs), they still maintain easily-interpretable model struc- 
tures. OT-SpAMs are instances of region-specific predictive model- 
s, which consist of region specifiers and region-specific predictors; 
the specifiers divide feature spaces into disjoint subspaces (region- 
s), and individual predictors perform predictions orresponding 
subspaces (as we note in Section 2, region-specific predictive mod- 
els unify the above-described two families of interpretable mod- 
els). OT-SpAMs employ an oblique treed split model as a region 
specifier and sparse additive models as individual region-specific 
predictors. 

As we have noted above, controlling model complexity is an 
import sue for maintaining model interpretability. For OT- 
SpAMs, tree structures (the depth of tree, the number of regions, 
etc.), feature selection for oblique region splitting, and feature se- 
lection for local sparse experts must be determined simultaneously. 
We address this challenging model selection issue by utilizing fac- 
torized asymptotic Bayesian (FAB) inference [11, 14]. Through 
EM-like i tive optimization, we are able to automatically obtain 
compact and interpretable OT-SpAMs. We demonstrate, on simu- 
lation, ben ark, and real world datasets, that, in terms of accu- 
racy, OT-SpAMs outperform state-of-the-art interpretable models 
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1. INTRODUCTION 
Model interpretability has been recognized to y a key role in 

practical data mining. Interpretable models provide signific - 
sights on data and model behaviors and may conv e end-users to 
employ certain models. It is well-recognized that, despite the 
dramatic evolution of machine learning approaches, such as ker- 
nel machines [41, 45], boosting [13], random s [3], and deep 
neura works [19, 24], simple models, like linear regressions or 
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and perform competitively with kernel SVMs, while still providing 
results that are highly understandable. 

The rest of this paper is organized as follows. Section 2 provides 
li ture reviews of region-specific predictive models. OT-SpAMs 
and the proposed learning algorithm are presented in Sections 3 and 
4, respectively. Simulation studies (Section 5) and ben ark eval- 
uations (Section 6) tatively show advantages of OT-SpAMs, 
and we demonstrate results on real world POS (point-of-sales) data 
in Section 7. 

formation only with every single test point, whi akes it difficult 
to understand overall prediction behaviors. 

3. OT-SPAMS: OBLIQUE TREED SPARSE 
ADDITIVE MODELS 

This section presents details of OT-SpAMs. We first describe the 
region specifiers and region-specific predictors for OT-SpAM and 
then derive the factorized asymptotic Bayesian inference in order 
to address the simultaneous model selection challenge. 

3.1 OT-SpAMs 
Our OT-SpAM is a variant of HMEs [22], which are tree struc- 

tured probabilistic mixtures of experts models. In HMEs, region- 
specific predictors (leaf nodes in trees) are referred to a pert- 

2. LI TURE REVIEW 
This section focuses mainly on region-specific predictive mod- 

els. Table 1 summarizes characteristics of region specific models, 
which are described below. A general and broader survey of inter- 
pretable models can be found in [12]. 

One of the most naive examples is a linear model, which has only 
one global region and employs a linear prediction model as the 
region-specific predictor. Some previous studies [18, 21] have 
argued that oblique hyper nes of linear models might be hard to 
understand for end-users. Feature sparseness is a key concept in 
trying to mitigate this issue, i.e., selecting a small number of key 
features makes understanding models a lot easier. To obtain sparse 
linear models (S ), various approaches, luding convex meth- 

s. Suppose we have observations {xn, yn}N ∼ X × Y, where n=1 X ∈ R is the  of covariates, Y ∈ R (for regression tasks) D 

or {0, 1} (for classification tasks), N is the number of samples, and 
D is the data dimensionality. Each gate (non-leaf node) in the tree 
determines whether a data instance will go to its left or right branch. 
At the i-th gate (i = 1, . . . , G, where G is the number of gates), 
let zi ∈ {0, 1} be the binary variable indicating which branch the 
instance x should go down (without loss of generality, let zi = 0 
represents the instance for going left). OT-SpAMs employ the fol- 
lowing logistic hyper ne for their oblique region specifiers: 

  

ods (e.g. Lasso [37], L1-regularized logistic regression [45]) and 
greedy optimization (e.g., orthogonal matching pursuit [29, 38]), 

 1−zi
   zi

 have been proposed, though their primary focus is on model gener- 
alization (to mitigate over-fitting), rather than on enhancing model 
interpretability. Sparse additive models (SAMs) [20, 32, 34] intro- 
duce feature-wise nonlinearity to improve accuracy. By restricting 
nonlinearity in individual features (i.e. ignoring nonlinear in c- 
tions among features), we can still visualize their feature-wise (but 
nonlinear) contributions and get insights from SAMs. Variants of 
SAMs (kernel density logistic regression (DLR) [6] and fast flux 
discriminant (FFD) [7]) have been proposed as accurate and inter- 
pretable models in recent KDD conferences, and research in this 
direction has become a topic of intense interest in the community. 

Decision trees, such as CART, have tree-structured region spec- 
ifiers and performs prediction using constant values in individual 
regions (a.k.a. piecewise constant predictors). Oblique decision 
trees [33] extend region specifiers from single-feature thresholding 
to linear hyper nes, and Bayesian treed linear models (BTLM- s) 
[8] employ linear hyper nes for region-specific predictors. Lo- cal 
supervised learning through space partitioning (LSL-SP) [42] 
utilizes linear hyper nes for both region-specific predictors and 
region specifiers. Although su odels improve predictive ac- 
curacy over simple decision trees, their dense linear hyper nes 
make the models difficult to understand. [44] studied a sparse treed 
model that aims to reduce the test-time cost. Eto et al. [11] pro- 
posed a variant of hierarchical mixture experts models that em- 
ploys factorized asymptotic Bayesian inference for model selec- 
tion (FAB/HMEs). Using the FAB framework [14], they en  
sparseness on region-specific linear predictors, which significantly 
improves interpretability over dense linear predictors, though their 
single-feature thresholding for region specifiers still restricts over- 
all predictive ability. Supersparse linear integer models and their 
variants [26, 40] also learn highly sparse and interpretable model 
structures, which was also presented as a KDD 2014 Industrial and 

ernment Track Invited Talk. A family of locally-linear mod- 
els (fast local KSVMs [35], locally linear SVMs [25], clustered 
SVMs [15], and local deep kernel learning (LDKL) [23]) uses test- 
point-specific linear predictors. They do not have explicit regions 
but, rather, genera inear predictors on the fly. A major drawback 
of this approach for our purposes is that they can provide model in- 

1 
1 + exp(−wi · x) 

1 
1 + exp(wi · x) 

p(zi|x) = , 

(1) 

where wi i pected to be sparse for maintaining interpretability. 
Let ζn = (ζn, . . . , ζn ) ∈ {0, 1}E (E is the number of experts) 1 E 

represent an indicator of the expert to which xn belongs, where 
ζn = 1 stands for the instance of belonging to the j-th expert. Let j Gi be the index set for the i-th gate, where Gi contains the indices 
of experts on the sub-tree of the i-th gate. Let Ej be the index set 
for the j-th expert, where Ej contains the indices of gates on the 
path from the root to the j-th expert. Given the region-specifier 
hyper nes {wi}G , the distribution on ζn can be described as i=1 
follows: 

YE Y n 
p(ζn|xn, {wi}G ) = ψ(xn, i, j)ζj , (2) i=1 

j=1 i∈Ej 

where ψ(xn, i, j) is the probability of xn’s going to the branch to 
which the j-th expert belongs at gate i, more specifically: 

( 
p(zn = 0|xn), j ∈ Gleft 

ψ(xn, i, j) = i i (3) . 
p(zn = 1|xn),  otherwise i 

where Gleft is the index set of experts in the left sub-tree of the i-th i 
gate. 

Let us consider the following SAM: 

XD 

fj (x) = fjd(xd), (4) 
d=1 

where fjd(·) is any smooth univariate function and many of them 
are expected to be zero (i.e., sparse). Notice that, if we set fjd(xd) = 
θdxd with linear coefficients θd, then (4) will be reduced to a stan- 
dard linear model. The generating distributions of y on the j-th 
expert is given by: 

p(y|x, φj ) = N(fj (x) − y, σ2), (5) j 
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Table 1: Comparison of region specific predictive models (sp.=sparseness, s.f.=single feature, f.w.=feature-wise). 

Θ̄ = [W̄ , Φ̄ ] is the um comple ikelihood estimator and for regression, where φj = (fj , σj ), and 
D• denotes the dimensionality of •.    1−y   y 

exp(fj (x)) 1 Although Eto et al. [11] asymptotically ignore | F̄w i  |1/2 and |F¯φ |1/2 , p(y|x, φj ) = , 

(6) 

j 
1 + exp(f (x)) 1 + exp(f (x)) using the law of large numbers, this paper considers the following 

upper bounds to obtain a bet pproximation, using Hadamard’s 
inequality [30]: 

j j 

for classification, where φj = fj . 
In summary, the entire likelihood is given by:  

i |1/2 ≤  
  2   

Dwi 
  2  

Dwi 

 XN X XN X ζn∂2 log ψ(xn, i, j) p({yn}N  |{xn}N , {φj }E
 , {wi}G |F̄  j (7) ζn  ) = w n=1 n=1 j=1 i=1 j ∂2(wi · xn) 

(12) 

  
XE 

! 
)  . 

n=1 j∈Gi n=1 j∈Gi YN 
p(yn|xn, φj )p(ζn|xn, {wi}G

 j i=1 
  !  2   !  2  

Dφj 
n=1  j=1 

XN Dφj XN ∂2 log p(yn|xn, φ ) |F̄ φ |1/2 ≤ ζn j 
3.2 Model Selection for OT-SpAM using FAB 

Framework 
In order to learn OT-SpAMs, as well as parameter estimation, we 

have to address three model selection issues simultaneously: 

M1: tree structure (the number of gates and experts, etc.). 

M2: sparseness of region specifiers (logistic gates presented in (1)). 

M3: sparseness of sparse additive experts. 

To accomplish these model selection tasks, we employ FAB infer- 
ence [14] for OT-SpAMs. Note that FAB has recently been used 
for learning treed sparse linear models [11], and this paper extends 
their framework to the learning of OT-SpAMs. 

FAB inference izes the following Bayesian marginal log 
likelihood: 

. j j ∂2fj 
n=1 n=1 

(13) 

By substituting (9), (12) and (13) into (8), we obtain factorized 
information criterion (FIC) as follows: 

n o 
FIC({x, y}N  , Θ) = max  L({x, y}N  , Θ, q)  , (14) n=1 n=1 

q,Θ 

where 
h L({x, y}N log p({y}N  , {ζ}N  |{x}N  , Θ) , Θ, q) = Eq n=1 n=1 n=1 n=1 

i XG XN XE XN ||wi|| X ||f || 0 log( j 0 log( ηnζn) αn ζn) − − ij j j j 2 2 
i=1 n=1 j∈Gi j=1 n=1 

::::::::::::::::::::::::::::::::::::::::::::::: 

XN XE 
q(ζn) log q(ζn), (15) − p({y }n=1|{x }n=1) = n N n N (8) j j 

       n=1 j=1 
p({y }n=1, {ζ }n=1|{x }n=1) n N n N n N 

max E log , and q q({ζn}N  ) q n=1 
exp (wi · xn) ∂2 log ψ(xn, i, j) n (16) where q is an arbitrary distribution on {ζn}N and the optimal αij = = , n=1 (1 + exp (wi · xn))2 ∂2(wi · xn) q is q ({ζ }n=1) = p({ζ }n=1|{y }n=1, {xn}N  ). Let Θ be ∗ n N n N n N 

 n=1 
Θ = [W, Φ] where W = [w1, ..., wG] and Φ =   1 [φ1, ..., φE ]. for regression 

for classification 
σ2 n (17) La ce’s method [43] is then applied to the numerator inside the 

log-function in (8) as follows: 
ηj = j 

exp f (xn ) . 
 j  

(1+exp fj (xn ))2 

p({y}N  , {ζ}N  |{x}N  ) ≈ p({y}N  , {ζ}N  |{x}N  , Θ̄ ) ||w ||0 and ||fj ||0 are the cardinalities of wi and fj , i.e, the num- j 
n=1 n=1 n=1 n=1 n=1 n=1 

ber of non-zero wi and fjd, respectively. Here, for computational Dφ D i w 
2 

  j 
2 

d YG YE (2π) (2π) simplicity, we assume that the data is appropria y scaled in ad- 
vance such that xn ∈ [−1, 1]D. 

Our new approximation, (12) and (13), results in a key differ- 
ence from FIC for HMEs derived by Eto et al. [11], namely the 
regularization terms (wave underline) are adjusted with the factors 

, PN P Dwi PN 
n=1 

Dφj 

ζj ) |F̄wi |1/2 j=1 ( n ζn) |F̄ φ i=1 ( |1/2 2 2 n=1 j∈G j j i 

(9) 

where 
αn and ηn (by setting αn = 1, and ηn = 1, (15) becomes con- ij j ij j ∂2 log p(ζn|xn, {wi}G  ) 1 sistent with that of Eto et al. [11]). These factors come from the F¯wi = −P i=1 (10) P , N 

n=1 

1 

∂wi∂wiT ζn diagonal elements of F  ̄wi and F¯ , which are empirical Fisher in- j∈Gi j φj 

formation matrices and provide natural measurements on the like- ∂2 log p(yn|ζn, xn, φj ) ¯ (11) F = −P lihood spaces [1]. It is worth noting that the previous FIC (i.e., . φ j N ∂φ ∂φT n 
n=1 ζj j αn = 1 and ηn = 1) regularizes the model without relation to j 

ij j 
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Algorithm 1 FAB EM optimization for OT-SpAM problem (the wi related terms in (15)): 
Input Data: {(xn, yn)}N  . 1: 

2: XN n=1 X 
Input Parameters: D ( um depth of the tree), δ (stop  wi(t) = arg max 

wi 
q(t−1)(ζn) log ψ(xn, i, j) j 

condition), ε (shrinkage threshold). n=1 j∈Gi 
3: 
4: 
5: 

Initialization: t = 0, L(0) = −∞, {ζn}N ∼ U [0, 1]. n=1 
XN w X i k k while L(t) − L(t−1) > δ do 0 ηnq(t−1)(ζn)) − log( j j 

M-Step: Update S(t), f (t) and σ(t) (regression) using Al- 2 
j j j n=1 j∈Gi 

gorithm 3. 
Let GiL be the index sets of experts on the left sub-tree of gate i, 
and GiR be the index sets of experts on the right sub-tree of gate i. 
We can re-write the problem as follows: 

M-Step: Update w(t) using Gate Optimization as Algo- 6: i 
rithm 2. 
E-Step: Update q(t+1)(ζn) using (18). 7: 

8: 
j 

Expert Shrinkage: Eliminate “non-effective” experts us- 
ing (19). 
t = t + 1. 

XN X kwik 0 log( wi(t) = arg max Q(wi) − 
wi 

ηnq(t−1)(ζn)), j j 2 9: 
10: 
11: 

n=1 j∈Gi 

(20) end while 
Post-processing: Execute hard-gate post-processing (see [11] where for details).   P 

Pj∈GiL 

! 
XN q(ζn) X exp(w · x ) i n 

j Q(wi) = q(ζn) log j 1 + exp(wi · xn) q(ζn) 
j∈Gi j n=1 j∈Gi   P ! the metric space of p({y}N  , {ζ}N  |{x}N  , Θ). On the oth- n=1 n=1 n=1 n XN X q(ζj ) 1 

1 + exp(wi · xn) 
er hand, our regularizers (wave underline) can naturally adjust the 
effect by taking the metric into account. 

q(ζn) Pj∈GiR + log . j q(ζn) 
j∈Gi j n=1 j∈Gi 

(21) 

This problem can be seen as a sparsity-regularized generalized l- 4. OPTIMIZATION ALGORITHM 
ogistic regression problem: i) unlike the standard regression, here To obtain the model whi aximizes FIC (15), FAB employs 

EM-like alternating optimization on Θ (M-step) and q (E-step). 
The overall algorithmic framework is described in Algorithm 1. 
The superscription (t) represents the t-th EM i tion. 

P P 
q(ζn ) q(ζn ) 

the response is any number in [0, 1] ( Pj∈GiL and Pj∈GiR j j 
q(ζn ) q(ζn ) j∈G j j∈G j P i i 

in this problem) and ii) there is a weight for each instance: q(ζj ). n 
j∈G i 

Problem (20) is non-convex (due to the L -regularization), and 0 

we have adopted a greedy strategy [38] to get an approximate solu- 
4.1 E-Step: updating variational distribution 

From (15), we obtain the following update equation: 
tion. Details are shown in Algorithm 2. Let S ⊆ [D] be the set of 
selected features. Also, we denote the izer of Q as follows: 

ŵ i(S) = max Q(wi(S)), 
wi (S) 

(22) Y 
q(t)(ζn) ∝ p(yn|xn, φ(t−1)) ψ(t)(xn, i, j) (18) j j 

where solving (22) is a constrained, weighted logistic regression 
problem. At each i tion, we selected the feature that izes 

i∈Ej 
    

exp −   X i n  w k α kfj k0 ηn k the gradient absolute value |∇ Q(wi)|, which is 0 j ij − exp , d 
  2Nj 2Ni         i∈Ej   X 

1:N 1:N  ::::::::::::::::::::::::::::::::: |∇dQ(w )| = ( q(ζj ) ◦ R ) · xd i 1:N  , (23)     PN 
= 

PN P 
= 

 j∈Gi   
where N ηnζn and N αn ζn on- j j j i ij j n=1 j∈Gi n=1 
trast to standard EM algorithms, (18) has the additional terms marked 
with the waved underline. These terms come from the regulariza- 

where ◦ is the Hadamard product, and 
  P ! 

q(ζ1:N ) tion terms in (15) (also marked with a waved underline). This caus- 
es a shrinkage effect [11, 14] through the EM i tion, i.e, more 
complex and smaller experts are penalized more, and we can safe- 
ly eliminate “non-effective” experts from the model using a simple 
thresholding rule as follows: 

1 j R1:N = Pj∈GiL − 
q(ζ1:N ) 1 + exp(−wi(k) · x1:N ) 

j∈Gi j 

and then solved the constrained weighted logistic regression prob- 
lem, until 

XN X 
Q(wi(k)) − Q(wi(k−1)) ≤ log( ηnq(t−1)(ζn)), XN (24) j j 

q(t)(ζn) < δ. (19) j n=1 j∈Gi 

was satisfied, where (k) is the i tion index in Algorithm 2. In 
this way, we have addressed the model selection issue M2. 

4.3 M-Step: Learning Local Experts 
In order to optimize the j-th local expert fj , we introduce the 

following model: 

XM 

n=1 

In practice, one could start from a sufficiently-large tree, after which 
the “shrinkage” scheme of OT-SpAM would find the proper size 
tree structure for capturing the data well. In this way, we have ad- 
dressed the model selection issue M1. 

4.2 M-Step: Learning Sparse Oblique Region 
Specifiers 

We update the i-th gate by solving the following optimization 
βm gm(x), (25) fjd(x) = jd 

m=1 
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Algorithm 2 Gate Optimization for OT-SpAM and fitted responses. Here we directly select the feature with the 
um gradient norm: 1: 

2: 
for i = 1, ..., G do 

Initialization S(k) 0, wi(k) 0, µ1:N(k) = ∅, k = = = d = arg max kg (xd  )(R ◦ q (ζj (k) 1:M 1:N (k) (t)  1:N (27) i i ))k2. 
1/(1 + exp(wi(k) · x1:N ). d6∈S(k) j 

3: 
4: 

while TRUE do 
Select feature d(k) = arg max 
ing to (23). 

This gradient criterion avoids having to fit the model O(D) times, 
whi akes the selection process much faster; ii) [27, 28] use an 
orthogonal matching pursuit type fitting procedure [38] (that is, af- 
ter selecting one new feature, the model is re-fitted using the newly 
selected feature pool). Rather than this approach, we use a match- 
ing pursuit [29] type method to speed up the algorithms, i.e., we just 
add the new fitted univariate function without re-fitting the model. 
The fitting equation (derived by solving a weighted least squares) 
is described as follows : 

(k) |∇dQ(wi)| accord- 
d6∈Si 

5: 
6: 

k = k + 1. 
Update S(k) = S(k) ∪d(k), wi(k) = ŵ (S(k)), µ1:N(k) = i i i i 

1/(1 + exp(−wi(k) · x1:N ). 
if (24) is satisfied then 

k = k − 1, and Break. 
end if 

end while 
Output wi(k). 

end for 

7: 
8: 
9: 

10: 
11: 
12: 

β1:M = (GT HG)−1GT R(k). (28) jd 

where G ∈ RN×M is the feature matrix such that G = g (xn) nm m d 
and H ∈ RN×N is the diagonal weighting matrix such that Hnn = Algorithm 3 Greedy Additive Regression for OT-SpAM 2 q  (ζ ) . These special designs make the algorithm much faster (t)  n 

j 
Input Data: {(xn, yn)}N , q(t)(ζn), σ(t−1). 1: 

2: 
3: 

than the procedures in [27, 28] by avoiding repeated model fitting 
and re-fitting. Though it might be less accurate in feature selection 
and model fitting (but not too much when the basis functions are not 
highly correlated with each other), the hard-gate post-processing 
proposed in [11] (the step 11 of Algorithm 1) makes the final model 
more stable and reliable, as we will see in Section 5. 

The differenc ween classification and regression is in the up- 
date of the residual. For regression, we can naturally def he 
residual as follows: 

n=1 j j 
for j = 1, ..., E do P 

Initialization S(k) = ∅, k = 0, α = N 
n=1 yn/N, fˆ(k) = j j 

α, Residual R(k) = y1:N − fˆ(k)(1:N ). j j 
4: 
5: 
6: 
7: 
8: 

9: 

while TRUE do 
k = k + 1. 
Select feature d(k) using (27). 
Fit fˆ(k) (by updating β1:M ) using (28) jd jd P 
Update S(k) = S(k)∪d(k), fˆ(k) = α+ (k) f ĵd (xj ). j j j d∈Sj R(k) = y1:N − fˆ(k)(x1:N ) (29) j 
Update residual R(k) using (29) for regression and (30) 
for classification. 
if (32) is satisfied then 

k = k − 1, and Break. 
end if 

end while 

The residual of logistic loss for classification is not so obvious, but 
we follow [17], which defines it in terms of the updating direction 
of the Newton step as follows: 

10: 
11: 
12: 
13: 
14: 
15: 

y1:N − µ1:N(k) 

R(k) = j (30) , 
µ1:N(k) ◦ (1 − µ1:N(k)) Update fˆ(t) = fˆ(k), σ(t) = kR(k)k . 2 j j j j j 

end for where 

exp(fˆ(k)(x1:N )) 
µ1:N(k) = j (31) . where gm is a pre-defined smooth basis function and M is the num- 

ber of basis functions (in our experiments, we use P-spline func- 
tions as gm). Here our parameterization is changed to φj = βj , 

j 1 + exp(fˆ(k)(x1:N )) j 

The stop  condition is defined as follows: 
  where βj = (β1:M , . . . , β1:M ). We then update the j-th local ex- j1 jD XN pert by solving the following optimization problem: log p(yn|xn, βˆ(k), σ(t−1)) q(t−1)(ζn) (32) j j j 

n=1 XN XE 
β(t) = arg max q(t−1)(ζn) log p(yn|xn, βj , σ2(t−1))   XN j j j — log p(y |x , f̂  , σ )  ≤ log( n  n (k−1) (t−1) β n n 0 ηj ζj ). n=1 j=1 j j 

n=1 

In this way, we have addressed the model selection issue M3. 
XE XN kβ k j ∞,0 log( βnζn), (26) − j j 2 
j=1 n=1 

5. SIMULATION STUDY: MODEL SELEC- 
TION AND VISUALIZATION 

This section presents results of simulation studies and demon- 
strates our FAB-based model selection for OT-SpAMs. In order to 
make OT-SpAMs interpretable, we proposes a visualization method 
that employs individual local sparse additive experts. 

5.1 Simulation Setup 
We generated N = 5000 data points in which each instance 

is described by D = 15 features, and the features are uniformly 
distributed in [0,1], i.e. X ∼ U [0, 1]D. The true tree structure is 

where kβj k∞,0 kkβ1:M k∞, kβ1:M k∞, ..., kβ1:M k∞k0 . No- = j1 j2 jD 

tice that we can simply ignore σ2(t−1) when we consider the clas- j 
sification case. 

Problem (26) is reduced to the optimization of weighted GLM 
under group sparsity regularization. This paper adopts the greedy 
optimization method summarized in Algorithm 3. Note that ex- 
isting works on greedy group selection [28] (or additive forward 
regression [27]) lude proposals for addressing the greedy group 
feature selection problem. ontrast to these, Algorithm 3 has the 
following differences: i) at the feature selection stage, [27] s- elects 
the feature that izes the alignment between residuals 
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Figure 1: Estimated additive functions for Expert1 in the simulations. The horizontal and vertical axes represent, respectively, the 
original feature and the estimated sparse additive feature. 

shown in (A). It has 4 experts, each of which uses 2 − 3 features, 
and the partition nodes use linear functions of 2 features. 

2.5X9 − 1.486X10 < 0.663 

2.5X9 − 1.6X10 < 0.613 1.5X6 − 0.683X4 < 0.369 1.6X3 − 0.506X12 < 0.698 

Expert 1 Expert 2 Expert 3 Expert 4 
1.5X6 − 0.7X4 < 0.358 1.6X3 − 0.5X12 < 0.715 

(B) Estimated tree model 

Figure 1 shows the estimated additive functions of Expert1. S- 
e we employ a matching pursuit type of optimization in the 

M-step, there is marginal estimation error in the estimated fea- ture 
functions before post-processing (green curves). After post- 
processing, the true (blue curves) and estimated curves (red curves) 
are quite consistent. Although we omit results for the other experts, 
we obtained similarly good estimation results for those as well. 

These results empirically demonstrate strong model selection ca- 
pability in addressing M1, M2 and M3 simultaneously. 

5.3 Visualization of Local Sparse Additive Ex- 
perts 

S e each sparse additive feature fjd is (feature-wise) nonlin- 
ear, visualization is critically important to maintain model inter- 
pretability. This paper proposes a stacked area plot to visualize 
sparse additive features. Figure 2 shows the visualization for Ex- 
pert1 (we shifted Expert1 to the negative side in this figure to more 
easily ex in our visualization method). The left-hand figure is a 
simple line plot of estimated feature functions w.r.t. X1, X2, and 
X7. The line plot would be difficult to see if several features were 
selected and overlapped one another in a single plot. To avoid this, 
we employ a stacked area plot that is constructed as follows. First, 
individual feature functions are separated into positive and negative 
sides, as shown in the middle column of Figure 2. The s- tacked 
area plot was then built by combining positive and negative stacked 
area plots (the right-hand figure). As is shown, we are able to avoid 
“ugly” overlap  and can clearly see how each input fea- ture 
“nonlinearly” contributes to the target signal. We visualize the 
stacked area plot for each expert, and the combination of standard 
tree visualization with the stacked area plots provides a full picture 
of nonlinear model behaviors. 

Expert 1 Expert 2 Expert 3 Expert 4 

(A) True tree model 

We generated response Y of the instances, in accord with the ex- 
perts they belongs to, in the following way: 

= 5 sin(πX1 ) + 15(X2 − 0.5)2 − 4X7 + 1 + ε, • Expert 1: Y 
o ∼ 0.01N (0, 1). 

• Expert 2: Y = 7/(1 + exp(5 − 10X5 )) + 5 sin(πX2) − 7 
5X8 + 2 + ε, ε ∼ 0.01N (0, 1). 

• Expert 3: Y = 8|X1 − 0.5| + 7(3X8 − 2)2 − 4 + ε, ε ∼ 
0.01N (0, 1). 

• Expert 4: Y = 5 cos(2πX2 ) + 5X8 + 2 log(100X10 + 3) − 
3 + ε, ε ∼ 0.01N (0, 1). 

In this simulation, we set the initial tree-depth to D = 4 (i.e., the 
initial number of experts was 16), the shrinkage threshold to ǫ = 
0.06N, and the stop  threshold to δ = 10−5. Also, s e oblique 
region specifiers using many features are hard to interpret, 
we set the um number of features used in each partition node 
to 3. Additionally, we employed P-spline functions (a family of B- 
splines with a smoothness penalty [10]) as gm in (25). We chose 
the penalty parameter for P-splines as 0.5, the spline degree as 3, 
the number of knots as 6. 

5.2 Model Selection Results 
The estimated tree structure is shown in (B). There were 16 ex- 

perts at the start, irrelevant experts were gradually pruned from the 
model by means of FAB regularization, and, at the convergence 
point, our method almost comple y recovered1 the true tree struc- 
tures with exactly the same features in each gate (oblique hyper- 

ne). 

6. BEN ARK EVALUATION OF PREDIC- 
TIVE ACCURACY 

We evaluated OT-SpAMs on 24 public ben ark data sets, avail- 
able from the UCI Machine Learning Repository [2], for both re- 
gression and classification tasks. Table 2 summarizes the statistics 
for these data sets. We used the same initial tree-depth and ter- 

1The partition functions in (B) have been properly scaled for com- 
parison with the functions in (A), s e scaling the functions does 
not change the decision boundary. 

1250 

 



 

 

Table 2: List of ben ark datasets. 

Figure 2: Stacked area visualization for the learned Expert1 in 
the simulation study. The horizontal and vertical axes repre- 
sent, respectively, the original feature and the estimated sparse 
additive feature. 

. 

but it is worth noting that LDKL produces a predictor at every s- 
ingle data point and that no interpretation of regions is provided, 
as may be seen in Table 1. We observed that OT-SpAMs per- 
formed slightly worse than SVM-RBFs and sacrificed accuracy 
for interpretability, though, except for D21, the sacrifice was not 
significant. 

mination conditions as in the simulations and evaluated root mean 
squared error (RMSE) for regression and accuracy lassification. 
For regression tasks, we compared OT-SpAM with the following 
methods: OLS (ordinary least squares using the full set of the fea- 

tures), RegTree2 (a classical regression tree model [4]), FAB/HME [11], 
AM (additive models [16] using the full set of the features), and 
SVR-RBF [36]. For classification tasks, we compared OT-SpAM 
with the following methods: LLR (linear logistic regression using 
the full set of the features), CART3 [4], LSL-SP4 [42], FAB/HME (we 
adopted the method described in [11] with logistic model), LD- 
KL [23], ALR (additive logistic regression [16] using the full set 
of the features), DLR5 [6], and SVM-RBF6 [9]. The parameters in 
SVR-RBF, LSL-SP, LDKL, DLR, and SVM-RBF were optimized 
on the basis of 10-fold cross validation on training data. Note that 
we used all features for linear and additive models (OLS, AM, LLR 
and ALR). The primary focus here was on accuracy evaluation, and 
they performed better with all features (without sparse regulariza- 
tion). 

Table 3 and Table 4 report the 10-fold averaged cross validation 
RMSE and classification accuracy, respectively. From these results, 
we have the following observations: 

On these data sets, OT-SpAM usually output treed models with 
5-8 experts, and these models were reasonably interpretable. OT- 
SpAM selected different fractions of features, depending on the 
data sets used. 

• 

In summary, we conclude that OT-SpAMs sacrificed minimum ac- 
curacy loss for interpretability, w.r.t. fully non-parametric method- 
s, by maintaining interpretable treed region structures and feature- 
wise sparse nonlinear expert structures. 

7. REAL WORLD APPLICATION: SALES 
FORECASTING 

In the retail industry, sales forecasting is a key component of 
advanced store management. Let us consider three scenarios: 

• For regression tasks, OT-SpAMs achieved the lowest RMSE val- 
ues in most cases. Both AMs and FAB/HMEs also performed 
much better than OLS and RegTrees. OT-SpAMs took advan- 
tages of both methods and performed competitively with SVR- 
RBF (or sometimes even outperformed it). 

A) store inventory management requires forecasting every 6 hours 
for 2-day to 1-week periods. Accurate forecasting reduces 
disposal loss, and model interpretability lets store managers 
safely use a forecasting-based ordering system. 

B) store assortment nning requires forecasting every 1 day for 
1-week to 3-week periods. Accurate forecasting reases 
revenue w.r.t. shelf-space, and model interpretability helps 
marketers to hypothesize good assortment strategies. 

C) production nning requires forecasting every 1 week for 2 
month periods. Accurate forecasting reduces supply-chain 
inventory losses, and model interpretability helps marketers 
to n release timing for new products. 

• For classification tasks, similar observations were obtained, i.e., 
FAB/HMEs and ALRs performed better than LLRs, and OT- 
SpAMs usually outperformed both them and state-of-the-art ad- 
ditive models (ALRs and DLRs). LDKL also performed well, 

2We use the built-in RegressionTree class in  
3We use the built- lassificationTree class in  
4  
5  We applied OT-SpAM to sales forecasting of sweet bakery prod- 
6For SVR-RBF and SVM-RBF, we use the LIBSVM package [5]. ucts in a middle-size supermarket located in a residential area of 
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I me #Instances #Features Task 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
D10 
D11 
D12 
D13 
D14 
D15 
D16 
D17 
D18 
D19 
D20 
D21 
D22 
D23 
D24 

Auto-mpg 
Boston-housing 

Stock 
Space-ga 
Abalone 

ParkinsonM 
Cpusmall 

Kinematics 
Puma8nh 
Comp-acti 
Ailerons 
Cadata 
Banana 

Australian 
Pima Diabetes 

Fourclass 
Splice 

Banknote 
Titanic 

Svmguide1 
EEG-eyestate 

Magic04 
Cod-rna 
Ijcnn1 

Regression 
Regression 
Regression 
Regression 
Regression 
Regression 
Regression 
Regression 
Regression 
Regression 
Regression 
Regression 

Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 

 

 



 

 

Table 3: Comparison of test RMSE values on ben ark datasets. The best and second best methods (except SVR-RBF) are 
highlighted in bold and bold italic faces, respectively. 

Table 4: Comparison of test classification accuracy on ben ark datasets. The best and second best methods (except SVM-RBF) 
are highlighted in bold and bold italic faces, respectively. 

Tokyo7. Our primary target scenarios were A) and B), and we 
set the target variable to total sales of sweet bakery products for one 
day one week later. We used three years of historical data whose 
time resolution was daily. The first two years (731 sam- ples) were 
used for training, and the other year (365 samples) was used for 
testing. Table 5 summarizes variables used for the fore- casting. 
There are 30 input features in total. In addition to sales information 
(x20, x21 and the target variable), we tly collected 
weather related variables (x2-x19) and also added calen- dar 
information (x22-x30). All numerical variables, luding the 
target variable, were standardized in advance. Experimental set- 
tings were the same as those of Sections 5 and 6, except the initial 
tree-depth (here we use D = 5). Figure 3 shows the forecasting re- 
sults for the test period. As can be seen, OT-SpAM achieved fairly 
good forecasting. 

The estimated tree structure is shown in (C). The region-specifier 
employed average pressure (x17), sales histories (x20 and x21), and 
weekday flag (x29). Taking into account the fact that average 
pressure in Tokyo is relatively high during May to September, the 
region-specifier identified the following clusters: 

• Expert1: in-season (high average sales) during early summer to 
autumn. 

• Expert2: off-season (low average sales) during early summer to 
autumn. 

• Expert3: other season (middle average sales) during early sum- 
mer to autumn. 

• Expert4: weekday during autumn to early summer. 
• Expert5: holiday during autumn to early summer. 

Figure 4 provides our stacked area plot for individual experts. 
We can characterize the experts as follows: 

−X17 + 0.55X20 ≤ −0.97 Expert1: Products in this category (sweets bakery) are sold a lot 
on Friday. The largest bias value among the experts supports our 
hypothesis that this cluster corresponds to in-season. 
Expert2: The small responses (i.e., the scale of the vertical axis 
is small) supports the hypothesis that this cluster corresponds to 
off-season, and the sales are small without relation to weather. 
Expert3: The response for daylight (x13) is high in the middle 
area of the horizontal axis. S e mid-summer daylight hours are 
long in Tokyo, this result indicates that sunny days tend to have 
large sales. 
Expert4: We can observe a strong response w.r.t the sales of 1 
week previous but the peak is somehow shifted to the left-hand 
side. This might indicate a natural decrease in sales following a 
promotional n. 

• 

• 
X20 ≤ 1.1 X29 ≤ 0.49 

Expert 4 Expert 5 • 
Expert 1 −X21 + 0.11X29 ≤ −0.7 

Expert 2 Expert 3 

(C) Estimated tree model for sales forecasting • 

7The  data  has  been  provided  by  KDP-SP  Co., , 
. 
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ID LLR CART LSL-SP FAB/HME LDKL ALR DLR OT-SpAM SVM-RBF 
D13 
D14 
D15 
D16 
D17 
D18 
D19 
D20 
D21 
D22 
D23 
D24 

68.5 ± 4.4 
84.6 ± 3.5 
69.6 ± 4.7 
75.0 ± 6.1 
80.4 ± 3.3 
86.0 ± 2.5 
77.1 ± 0.4 
89.1 ± 0.5 
58.0 ± 0.6 
78.9 ± 1.0 
89.6 ± 0.4 
92.1 ± 0.5 

84.7 ± 6.4 
86.2 ± 4.2 
73.9 ± 8.0 
95.8 ± 2.2 
90.7 ± 3.6 
97.4 ± 1.5 
79.1 ± 0.7 
96.7 ± 0.8 
82.7 ± 0.7 
83.8 ± 0.8 
93.8 ± 0.3 
97.4 ± 0.4 

69.7 ± 7.1 
86.2 ± 3.7 
74.9 ± 6.4 
78.6 ± 6.2 
83.0 ± 5.8 
98.1 ± 1.6 
78.1 ± 0.4 
93.7 ± 0.7 
76.5 ± 1.2 
81.4 ± 1.3 
91.1 ± 0.3 
90.4 ± 0.3 

76.7 ± 8.5 
85.3 ± 3.7 
69.7 ± 8.3 
76.5 ± 6.0 
79.2 ± 3.3 
93.4 ± 1.9 
77.6 ± 0.5 
93.8 ± 0.9 
60.8 ± 1.4 
81.7 ± 1.4 
91.0 ± 0.5 
93.9 ± 2.2 

88.7 ± 4.6 
85.6 ± 4.1 
75.7 ± 7.9 
96.8 ± 3.3 
85.4 ± 1.1 
99.9 ± 0.2 
79.0 ± 0.7 
96.2 ± 1.1 
55.1 ± 0.0 
85.0 ± 0.8 
94.0 ± 1.2 
94.2 ± 1.7 

76.2 ± 8.1 
86.5 ± 2.4 
76.5 ± 7.5 
90.0 ± 3.4 
90.7 ± 2.2 
98.9 ± 0.9 
77.8 ± 0.3 
96.8 ± 0.7 
57.9 ± 1.8 
84.9 ± 0.8 
94.0 ± 0.2 
93.7 ± 0.6 

67.0 ± 7.1 
86.5 ± 3.5 
76.5 ± 6.7 
75.8 ± 4.7 
90.8 ± 2.0 
88.8 ± 1.4 
77.6 ± 0.3 
95.5 ± 1.0 
55.1 ± 0.1 
78.6 ± 0.9 
77.6 ± 0.4 
91.1 ± 0.8 

82.2 ± 7.5 
87.1 ± 3.9 
77.5 ± 7.1 
96.1 ± 1.8 
92.5 ± 2.2 
99.1 ± 0.7 
78.3 ± 0.5 
97.1 ± 0.6 
59.7 ± 2.3 
85.8 ± 1.1 
94.2 ± 0.2 
95.6 ± 1.9 

91.3 ± 4.0 
85.5 ± 3.7 
75.8 ± 8.8 
99.8 ± 0.5 
86.1 ± 3.0 
100 ± 0.0 
78.5 ± 0.0 
96.9 ± 0.1 
81.6 ± 0.1 
87.2 ± 0.1 
95.6 ± 0.0 
98.6 ± 0.1 

ID OLS RegTree FAB/HME AM OT-SpAM SVR-RBF 
D1 
D2 

D3 
D4 
D5 
D6 
D7 
D8 
D9 
D10 
D11 
D12 

5.10 ± 0.53 
5.38 ± 0.86 
2.32 ± 0.09 
0.14 ± 0.01 
2.32 ± 0.17 
7.30 ± 0.10 
16.2 ± 0.31 
0.29 ± 0.00 
4.67 ± 0.09 
15.5 ± 0.30 

(2.50 ± 2.2) ·10−4 
(7.48 ± 0.1) ·104 

6.67 ± 1.33 
9.06 ± 2.92 
1.99 ± 0.34 
0.28 ± 0.03 
5.57 ± 0.22 
0.90 ± 0.34 
7.57 ± 0.21 
0.40 ± 0.01 
8.44 ± 0.31 
6.73 ± 0.28 

(4.27 ± 0.1) ·10−4 
(12.6 ± 0.3) ·104 

3.29 ± 0.32 
3.72 ± 0.96 
2.28 ± 0.39 
0.13 ± 0.01 
2.27 ± 0.15 
4.96 ± 0.57 
5.14 ± 0.62 
0.24 ± 0.01 
4.18 ± 0.21 
5.12 ± 0.40 

(1.70 ± 0.0) ·10−4 
(6.82 ± 0.1) ·104 

2.88 ± 0.43 
3.65 ± 0.72 
1.33 ± 0.11 
0.13 ± 0.02 
2.31 ± 0.10 
5.11 ± 0.06 
3.79 ± 0.22 
0.20 ± 0.00 
4.24 ± 0.10 
3.57 ± 0.18 

(1.73 ± 0.0) ·10−4 
(6.48 ± 0.1) ·104 

2.79 ± 0.52 
3.41 ± 0.55 
1.02 ± 0.10 
0.12 ± 0.02 
2.22 ± 0.12 
2.99 ± 0.19 
3.26 ± 0.35 
0.19 ± 0.00 
3.31 ± 0.08 
2.79 ± 0.61 

(1.66 ± 0.0) ·10−4 
(5.97 ± 0.1) ·104 

3.13 ± 0.48 
5.65 ± 0.80 
0.91 ± 0.09 
0.10 ± 0.01 
2.17 ± 0.11 
2.95 ± 0.07 
4.56 ± 0.49 
0.07 ± 0.01 
3.34 ± 0.09 
5.07 ± 0.35 

(5.97 ± 1.2) ·10−4 
(11.8 ± 0.0) ·104 

 

 



 

 

Figure 3: Sales forecasting results for the test period (one year) using OT-SpAMs. 

stores, but we believe that the above results demonstrate high inter- 
pretability of OT-SpAMs in the real world applications. Table 5: List of variables in the sales forecasting dataset. N 

and B stand for numerical and binary values. weather1 and 
weather2 are forecasting (1 week ahead) and history (1 week 
ago), respectively. 8. SUM ND FUTURE WORK 

We have proposed oblique treed sparse additive models, novel 
extensions of generalized additive models for heterogeneous da- ta 

ysis that employs the learning of hierarchical mixtures of 
sparse additive models. We have presented a Bayesian learning al- 
gorithm which fully automates space partitioning and feature selec- 
tion, making the proposed approach nearly parameter . Promis- 
ing empirical results have been obtained for both simulated and 
real-world data. Future work will address the theoretical under- 
standing and computational efficiency of OT-SpAMs, as well as 
extensions to su ore general data mining problems as multi- 
class classification and Poisson regression. 
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用可解释性换取准确性：斜树稀疏可加模型王家雷藤卷良平本 芝加哥大学 NEC  NEC 公司 

jialei@uchicago.edu rfujimaki@nec-labs.com y-motohashi@bk.jp.nec.com 

抽象的模型可解释性已被认为在实际数据挖掘中发挥着关键作用。可解释模型提供了对数据和模型行为的重要见解，并可能说服最终用户采用某些模型。然而，作为这些优

势的回报，通常存在牺牲准确性，即需要限制模型表示的灵活性（例如线性、基于规则等）和模型复杂性，以便用户能够理解结果。本文提出倾斜树稀疏加性模型 (OT-SpAM)。我

们的主要重点是开发一种模型，该模型牺牲一定程度的可解释性来提高准确性，但通过核支持向量机 (SVM)等完全非线性模型实现完全足够的准确性。OT -SpaAM 是区域特定预

测模型的实例。它们将特征空间划分为具有稀疏倾斜树 的区域，并将局部稀疏可加专家分配给各个区域。为了保持 OT-SpAM 可解释性， 须保持整体模型结构简单，这

产生了稀疏倾斜区域结构和稀疏局部专家的同时模型选择问题。我们通过扩展分解渐近 推理来解决这个问题。我们在模拟、基准和现实世界中进行了演示就准确性而言，O

T-SpAM 优于最先进的可解释模型，并且与内核 SVM 具有竞争力，同时仍然提供高度可理解的结果。 

可解释模型、模型选择、稀疏性一、简介模型可解释性已被认为在实际数据挖掘中发挥着关键作用。可解释模型提供了对数据和模型行为的重要见解，并可能说服最终

用户采用某些模型。众所周知，尽管机器学习方法，例如内核机器[41,45]、提升[13]、随机森林[3]和深度神经网络[19,24]、简单模型，例如线性回归或允许免费制作本作品的
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rg.KDD '15,August 11 -14,2015,Sydney,NSW,Australia 请求 。 
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决策树在 、医学分析和科学等应用中仍然受到青睐，对于这些应用来说，理解数据背后的现象比简单的准确预测更重要。然而，作为可解释性优势的回报，由于模型表示

的灵活性（例如线性、基于规则等）和模型复杂性需要受到限制，以便用户能够理解结果，因此通常会牺牲准确性。 

关于模型可解释性问题的讨论有两个关键概念：1）模型表示和 2）模型复杂性。对于前者，线性模型（例如广义线性模型（GLM）[31]）和决策树（例如，分类和回归树（C

ART）[4]）可能被认为是最容易解释的。尽管其模型表示的简单性有助于最终用户的理解，但它也限制了它们的预测能力。后者，特征稀疏性是提高线性模型可解释性的关键概

念；即，选择少量关键特征使理解模型变得更加容易。此外，决策树的 规则链可能会提高复杂数据的预测准确性，它使得规则结构难以理解。准确性和可解释性之间的权衡仍

然是一个重要问题。本文提出了倾斜树稀疏加性模型（OT-SpAM），它提供了比线性模型和决策树更灵活的表示（因此，牺牲了一定程度的可解释性）。同时提供与此类完全模型相

同的精度。非参数模型作为核支持向量机（KSVM），它们仍然保持易于解释的模型结构。OT-SpAM 是区域特定预测模型的实例，由区域指定器和区域特定预测器组成；指定者将特

征空间划分为不相交的子空间（区域），并且各个预测器在相应的子空间中执行预测（正如我们在第 2 节中注意到的那样，区域特定的预测模型统一了上述两个可解释模型系列).

OT-SpAM 采用倾斜树分割模型作为区域指定器，并采用稀疏加性模型作为各个区域特定的预测器。 

如上所述，控制模型复杂度是维持模型可解释性的重要问题。对于 OT-SpAM，树结构（树的深度、区域数量等）、倾斜区域 的特征选择以及特征选择-局部稀疏专家的选

择必须同时确定。我们通过利用分解渐近 FAB）推理来解决这个具有 性的模型选择问题[11,14]。通过类似 EM 的迭代优化，我们能够自动获得紧凑和可解释的 OT-S

paAM。我们在模拟、基准和现实世界数据集上证明，在准确性方面，OT-SpAM 优于最先进的可解释模型 

：http:/dx. .org/10.1145/2783258.2783407。 

并与内核 SVM 相媲美，同时仍然提供易于理解的结果。 

本文的其余部分组织如下。第 2 节提供了特定区域预测模型的文献综述。第 3 节和第 4 节分别介绍了 OT-SpAM 和 学习算法。模拟研究（第 5 节）和基准评估评估

（第 6 节）定量地显示了 OT-SpAM 的优势，我们在第 7 节中展示了现实世界 POS（销售点）数据的结果。 



 

 

2。文献综述本节主要关注区域特定的预测模型。表 1 总结了区域特定模型的特征，如下所述。对可解释模型的一般性和更广泛的 可以在[12]中找到。 

最简单的例子之一是线性模型，它只有一个全局区域，并采用线性预测模型作为区域特定的预测器。之前的一些研究[18,21]认为线性模型的倾斜超平面可能很难特征稀疏性

是试图缓解此问题的一个关键概念，即选择少量关键特征可以使理解模型变得更加容易。为了获得稀疏线性模型（SLM），有多种方法，包括凸方法-ods （例如 Lasso [37]，L1 正

则化逻辑回归[45]）和贪婪优化（例如正交匹配追踪[29,38]）已经被提出，尽管它们的主要焦点是模型泛化（减轻过度拟合），而不是增强模型的可解释性。稀疏加性模型（SAM）

[20,32,34]引入特征非线性以提高精度。通过限制单个特征的非线性（即忽略非线 互作用）特征之间），我们仍然可以可视化它们在特征方面（但非线性）的贡献，并从 SAM

 中获得见解。SAM 的变体（核密度逻辑回归 (DLR)[6]和快速 fux 判别式 (FFD)[7]）已被在最近的 KDD 会议上提出了准确且可解释的模型，并且该方向的研究已成为社区密切

关注的话题。 

决策树，例如 CART，具有树结构的区域说明符，并使用各个区域中的常数值（也称为分段常数预测器）执行预测。倾斜决策树 [33]将区域说明符从单特征阈值扩展到线性

超平面，并且 树线性模型 (BT )[8]对区域特定的预测器使用线性超平面。通过空间分区的本地监督学习（LSL-SP）[42]对区域特定的预测器和区域指定器使用线性超

平面。尽管这样的模型改进了预测 AC-简单决策树的准确性，其密集的线性超平面使模型难以理解。[44]研究了一种稀疏树模型，旨在减少测试时间成本。Eto 等人[11]提出了一

种分层混合的变体采用因子分解渐近 推理进行模型选择（FAB/HME）的专家模型。使用 FAB 框架 [14]，它们对特定区域的线性预测器实施稀疏性，这显着提高了密集线性

预测器的可解释性，尽管它们的区域指定者的单特征阈值仍然限制了整体预测能力。超稀疏线性整数模型及其变体[26,40]也学习高度稀疏和可解释的模型结构，这也作为 KDD 2

014 工业和 轨道邀请 提出一系列局部线性模型（快速局部 KSVM [35]、局部线性 SVM [25]、集群 SVM [15]和局部深度核学习 (LDKL)[23]）使用测试点特定的线性预测

器。它们没有明确的区域，而是在 fy 上生成线性预测器。对于我们的目的而言，这种方法的一个主要缺点是它们只能为每个测试点提供模型信息，这使得难以理解整体预测行

为。 

3.OT-SPAMS：斜树稀疏可加模型本节介绍 OT-SpAM 的详细信息。我们首先描述 OT-SpAM 的区域指定器和区域特定预测器，然后推导分解渐近 推理，以解决同时模型

选择的 。 

3.1 OT- 邮件我们的 OT-SpAM 是 HME 的变体 [22]，它是专家模型的树结构概率混合。在 HME 中，区域特定的预测器（树中的叶节点）被称为专家模型 

n}N 

s.假设我们有观测值{x n ,y n=1 ～X ×Y，其中 X∈RD 是协变量的域，Y∈R（对于回归任务）或{0,1}（对于分类任务），N是样本数，D为数据维数。树中的每个门（非叶

子节点）决定一个数据实例是否会 其左分支或右分支。在第 i 个门（i =1,.,G ，其中 G是门的数量），令 zi ∈{0,1}为二元变量，指示实例 x 应该向下走哪个分支（不失一

般性，令 zi =0 代表向左走的实例）。OT -SpaAM 采用以下逻辑超平面作为其倾斜区域说明符： 

1.滋滋 

11 

p(zi|x)=ii ， 

1 +exp(.w·x)1 +exp(w·x) 

1） 

其中 w i 预计会稀疏以保持可解释性。 

令 zn =(z1 n ,.,zEn )ε{0,1}E（E 为专家数量）表示 x n 所属专家的指标，其中 zjn =1 代表属于 j 的实例-第 i 个专家。设 Gi 为第 i 个门的索引集，其中 Gi 包

含第 i 个门的子树上的专家索引。设 Ej 为第 j 个专家的索引集，其中 Ej 包含从根到第 j 个专家的路径上的门的索引。给定区域说明符 



 

 

i}G 

超平面{w i=1,zn 上的分布可以描述如下： 

乙 

ni}Gn j 

p(zn|x ,{w i=1)=ψ(x ,i,j)n ,(2) 

j=1 i∈Ej 

其中 ψ(x n,i,j)是 x n 在第 i 个门进入第 j 个专家所属分支的概率，更具体地说： 

n j ∈Gleft 

p(zi =0|x n),i 

ψ(xn,i,j)=.(3) 

p(zin =1|x n)，否则其中 Gi left 是第 i 个门的 树中专家的索引集。 

让我们考虑以下 SAM： 

D 

fj(x)=fjd(xd),(4)d=1 

其中 fjd()是任何平滑单变量函数，其中许多函数预计为零（即稀疏）。请注意，如果我们用线性系数 θd 设置 fjd(xd)=θdxd，则 (4)将简化为标准线性模型。第 j 个专

家的 y 生成分布由下式给出： 

p(y|x,φj )=N (fj (x).y,σj 2),(5) 

表 1：区域特定预测模型的比较（sp.=稀疏性，s.f.=单一特征，f.w.=特征明智）。S AM DT ODT BTLM FAB/HME LSL-SP OT-SpAM LDKL 

区域全局 s.f.threshold 倾斜 s.f.threshold 倾斜测试点特定区域 sp.X ×X ×X 不适用预测器线性 f.w.非线性常量线性 f.w.非线性线性预测因子 sp.X ×X ×X × 

参考文献[37][6,7,34][4][33,39][8][11][42]本文[23] 

对于回归，其中 φj =(fj ,σj ),和 1.y y 

1 指数 (fj (x) 

p(y|x,φj)=,1 +exp(fj (x)1+exp(fj (x) 

6） 

对于分类，其中 φj =fj 。总之，整个似然由下式给出： 

n}Nn}Ni}G 

p({y n=1|{x n=1,{φj }Ej=1,{w i=1)=(7)NE 

 

p(y |x ,φj )p(ζjn|x ,{w }iG =1).n=1 j=1 

3.2 使用 FAB 框架的 OT-SpAM 模型选择为了学习 OT-SpAM 以及参数估计， 须同时解决三个模型选择问题： 



 

 

M1：树形结构（门数、专家数等）。 

M2：区域规范的稀疏性（逻辑门在（1）中提出。 

M3：稀疏加性专家的稀疏性。 

为了完成这些模型选择任务，我们对 OT-SpAM 使用 FAB 推理 [14]。请注意，FAB 最近已用于学习树状稀疏线性模型 [11]，本文将其框架扩展到 OT-SpAM 的学习 SpAM。 

FAB 推理最大化以下 边际对数似然： 

恩 

N}N 

p({y n=1|{x n=1)=(8) 

n}Nn}N 

p({y n=1,{zn}Nn=1|{x n=1) 

最大方程对数， 

qq({zn}N) 

n=1 

其中 q 是 {zn}Nn=1 和最优 n}Nn}N 上的任意分布 

q 是 q 。({zn}nN =1)=p({zn}nN =1|{y n=1,{x n=1)。设 =[W,]其中 W =[w 1 ,.,w G]和 =[φ1,.,φE ]。然后将 方法 [43]应用于 (8)中对数函数内的分子，如

下所示： 

p({y}Nˉ 

n=1,{z}Nn=1|{x}Nn=1,{z}Nn=1,) 

n=1)≈p({y}Nn=1|{x}N 

D°j 

我重力 

2π)2 (2π)2 

D 

N w i D°j , 

氮 

i=1 (zn)2 |Fˉ i |1/2 j=1 zn 2 |ˉ |1/2 

n=1 j∈Gi j w (n=1 j )F°j 

9） 

在哪里 

n 



 

 

1 .2 log p(zn|x ,{w i}iG =1)ˉ 

F i =.iT ,(10) 

wN zn 

无线网络 

n=1 j∈Gi j n 

1 .2 log p(y n|zn ,x ,φj ) 

ˉ 

F°j =.N .(11) 

δn .φj .φTj 

n=1j 

ˉ =[Wˉ ,]ˉ 是最大完全似然估计量，D.表示的维数。 

尽管 Eto 等人[11]利用大数定律渐近地忽略了|Fˉ w i |1/2 和|Fˉ °j，但本文考虑以下上限以获得更好的近似，利用 Hadamard 不等式[30]： 

2. 

D 

 ˉi |1/2F w ≤N .zn .j n=1 j∈Gi w i N .n=1 j∈Gi zn nj .2 log ψ(x ,i,j).2(wi ·xn) 

12） 

2 2 

 ˉ|1/2F°j ≤N D°j zn j n=1 N .2 nD°jlog p(y n|x ,φj ).2fjn=1 。 

13） 

将式（9）、（12）、（13）代入式（8），得到分解信息准则（FIC）如下： 

FIC({x,y}Nn=1,)=max n=1,q),(14) 

L({x,y}N 

q, 

在哪里 

L({x,y}Nn=1,q)=Eqn=1,{z}Nn=1,) 

log p({y}Nn=1|{x}N 

GN EN 

w i|0 |fj |0 

 log(αnij zjn).log(ηjn zjn) 
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