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Model interpretability has been recognized to play a key role in
practical data mining. Interpretable models provide significant in-
sights on data and model behaviors and may convince end-users to
employ certain models. In return for these advantages, however,
there is generally a sacrifice in accuracy, i.e., flexibility of model
representation (e.g., linear, rule-based, etc.) and model complex-
ity needs to be restricted in order for users to be able to under- stand
the results. This paper proposes oblique treed sparse additive
models (OT-SpAMs). Our main focus is on developing a mod-
el which sacrifices a certain degree of interpretability for accuracy
but achieves entirely sufficient accuracy with such fully non-linear
models as kernel support vector machines (SVMs). OT-SpAMs are
instances of region-specific predictive models. They divide fea-
ture spaces into regions with sparse oblique tree splitting and as-
sign local sparse additive experts to individual regions. In order to
maintain OT-SpAM interpretability, we have to keep the overall
model structure simple, and this produces simultaneous model se-
lection issues for sparse oblique region structures and sparse local
experts. We address this problem by extending factorized asymp-
totic Bayesian inference. We demonstrate, on simulation, bench-
mark, and real world datasets that, in terms of accuracy, OT-SpAMs
outperform state-of-the-art interpretable models and perform com-
petitively with kernel SVMs, while still providing results that are
highly understandable.
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1. INTRODUCTION

Model interpretability has been recognized to play a key role in
practical data mining. Interpretable models provide significant in-
sights on data and model behaviors and may convince end-users to
employ certain models. It is well-recognized that, despite the
dramatic evolution of machine learning approaches, such as ker-
nel machines [41, 45], boosting [13], random forests [3], and deep
neural networks [19, 24], simple models, like linear regressions or
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decision trees, are still preferred in such applications as market- ing,
medical analytics, and science, for which understanding phe-
nomena behind data are more important for end users than sim- ply
accurate prediction. In return for advantages in interpretability,
however, there is generally a sacrifice in accuracy since flexibility
of model representation (e.g., linear, rule-based, etc.) and model
complexity need to be restricted in order for users to be able to
understand the results.

There are two key concepts in discussions on the issue of model
interpretability: 1) model representation and 2) model complexi-
ty. For the former, linear models (e.g., generalized linear mod- els
(GLMs) [31]) and decision trees (e.g., classification and re-
gression tree (CART) [4]) may be considered to be the most in-
terpretable. Although the simplicity of their model representations
contributes significantly to end-user understanding, it also limits
their predictive ability. For the latter, feature sparseness is a key
concept in improving interpretability for linear models; i.e., select-
ing a small number of key features makes understanding models a
lot easier. Also, whiles deep rule chains for decision trees might
improve predictive accuracy for complex data, it makes the rule
structures hard to understand. The trade-off between accuracy and
interpretability remains an important issue.

This paper proposes oblique treed sparse additive models (OT-
SpAMs), which provide more flexible representation than linear
models and decision trees (and, therefore, sacrifice a certain de-
gree of interpretability.) While offering the same accuracy as that
of such fully non-parametric models as kernel support vector ma-
chines (KSVMs), they still maintain easily-interpretable model struc-
tures. OT-SpAMs are instances of region-specific predictive model-
s, which consist of region specifiers and region-specific predictors;
the specifiers divide feature spaces into disjoint subspaces (region-
s), and individual predictors perform predictions in corresponding
subspaces (as we note in Section 2, region-specific predictive mod-
els unify the above-described two families of interpretable mod-
els). OT-SpAMs employ an oblique treed split model as a region
specifier and sparse additive models as individual region-specific
predictors.

As we have noted above, controlling model complexity is an
important issue for maintaining model interpretability. For OT-
SpAMs, tree structures (the depth of tree, the number of regions,
etc.), feature selection for oblique region splitting, and feature se-
lection for local sparse experts must be determined simultaneously.
We address this challenging model selection issue by utilizing fac-
torized asymptotic Bayesian (FAB) inference [11, 14]. Through
EM-like iterative optimization, we are able to automatically obtain
compact and interpretable OT-SpAMs. We demonstrate, on simu-
lation, benchmark, and real world datasets, that, in terms of accu-
racy, OT-SpAMs outperform state-of-the-art interpretable models



and perform competitively with kernel SVMs, while still providing
results that are highly understandable.

The rest of this paper is organized as follows. Section 2 provides
literature reviews of region-specific predictive models. OT-SpAMs
and the proposed learning algorithm are presented in Sections 3 and
4, respectively. Simulation studies (Section 5) and benchmark eval-
uations (Section 6) quantitatively show advantages of OT-SpAMs,
and we demonstrate results on real world POS (point-of-sales) data
in Section 7.

2. LITERATURE REVIEW

This section focuses mainly on region-specific predictive mod-
els. Table 1 summarizes characteristics of region specific models,
which are described below. A general and broader survey of inter-
pretable models can be found in [12].

One of the most naive examples is a linear model, which has only
one global region and employs a linear prediction model as the
region-specific predictor. Some previous studies [18, 21] have
argued that oblique hyperplanes of linear models might be hard to
understand for end-users. Feature sparseness is a key concept in
trying to mitigate this issue, i.e., selecting a small number of key
features makes understanding models a lot easier. To obtain sparse
linear models (S LMzg), various approaches, including convex meth-
ods (e.g. Lasso [37], Li-regularized logistic regression [45]) and
greedy optimization (e.g., orthogonal matching pursuit [29, 38]),
have been proposed, though their primary focus is on model gener-
alization (to mitigate over-fitting), rather than on enhancing model
interpretability. Sparse additive models (SAMs) [20, 32, 34] intro-
duce feature-wise nonlinearity to improve accuracy. By restricting
nonlinearity in individual features (i.e. ignoring nonlinear interac-
tions among features), we can still visualize their feature-wise (but
nonlinear) contributions and get insights from SAMs. Variants of
SAMs (kernel density logistic regression (DLR) [6] and fast flux
discriminant (FFD) [7]) have been proposed as accurate and inter-
pretable models in recent KDD conferences, and research in this
direction has become a topic of intense interest in the community.

Decision trees, such as CART, have tree-structured region spec-
ifiers and performs prediction using constant values in individual
regions (a.k.a. piecewise constant predictors). Oblique decision
trees [33] extend region specifiers from single-feature thresholding
to linear hyperplanes, and Bayesian treed linear models (BTLM- s)
[8] employ linear hyperplanes for region-specific predictors. Lo- cal
supervised learning through space partitioning (LSL-SP) [42]
utilizes linear hyperplanes for both region-specific predictors and
region specifiers. Although such models improve predictive ac-
curacy over simple decision trees, their dense linear hyperplanes
make the models difficult to understand. [44] studied a sparse treed
model that aims to reduce the test-time cost. Eto et al. [11] pro-
posed a variant of hierarchical mixture experts models that em-
ploys factorized asymptotic Bayesian inference for model selec-
tion (FAB/HMEs). Using the FAB framework [14], they enforce
sparseness on region-specific linear predictors, which significantly
improves interpretability over dense linear predictors, though their
single-feature thresholding for region specifiers still restricts over-
all predictive ability. Supersparse linear integer models and their
variants [26, 40] also learn highly sparse and interpretable model
structures, which was also presented as a KDD 2014 Industrial and
Government Track Invited Talk. A family of locally-linear mod-
els (fast local KSVMs [35], locally linear SVMs [25], clustered
SVMs [15], and local deep kernel learning (LDKL) [23]) uses test-
point-specific linear predictors. They do not have explicit regions
but, rather, generate linear predictors on the fly. A major drawback
of'this approach for our purposes is that they can provide model in-
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formation only with every single test point, which makes it difficult
to understand overall prediction behaviors.

3. OT-SPAMS: OBLIQUE TREED SPARSE
ADDITIVE MODELS

This section presents details of OT-SpAMs. We first describe the
region specifiers and region-specific predictors for OT-SpAM and
then derive the factorized asymptotic Bayesian inference in order
to address the simultaneous model selection challenge.

3.1 OT-SpAMs

Our OT-SpAM is a variant of HMEs [22], which are tree struc-
tured probabilistic mixtures of experts models. In HMEs, region-
specific predictors (leaf nodes in trees) are referred to as eapert-
s. Suppose we have observations {Xn, y"}V,_; ~ X x Y, where
X € R s the domain of covariates, Y € R (for regression tasks)
or {0, 1} (for classification tasks), N is the number of samples, and
D is the data dimensionality. Each gate (non-leaf node) in the tree
determines whether a data instance will go to its left or right branch.
Atthei-thgate (i = 1,..., G, where G is the number of gates),
let z; € {0, 1} be the binary variable indicating which branch the
instance X should go down (without loss of generality, letz; = 0
represents the instance for going left). OT-SpAMs employ the fol-
lowing logistic hyperplane for their oblique region specifiers:

1—z; Zi
1 1
PElX) = Ty —_—
exp(—W*- X) 1+ exp(W!- X)
M
where Wi is expected to be sparse for maintaining interpretability.
Let{n = (4,..., ¢y € {0, 1}E (E is the number of experts)

represent an indicator of the expert to which X" belongs, where
(% = 1 stands for the instance of belonging to the j-th expert. Let
G; be the index set for the i-th gate, where G; contains the indices
of experts on the sub-tree of the i-th gate. Let E; be the index set
for the j-th expert, where E; contains the indices of gates on the
path from the root to the j-th expert. Given the region-specifier
hyperplanes {W#} ¢ 4 the distribution on (" can be described as
follows:

v n
p(é’nlxn, {Wi}LG=1) = w(Xn, [,j)ii , 2

J=1 i=k;

where w(X", i, j) is the probability of X*’s going to the branch to
which the j-th expert belongs at gate i, more specifically:

pEp = 0|xm, j €GE"

3
pt = 1|xn), .

X 1, )) = L.
v % otherwise

where Glft is the index set of experts in the left sub-tree of the i-th

gate.
Let us consider the following SAM:

>
GO = fia(Xa),

d=1

Q)

where fja(-) is any smooth univariate function and many of them
are expected to be zero (i.e., sparse). Notice that, if we set fja(Xd) =
6axa with linear coefficients fq, then (4) will be reduced to a stan-
dard linear model. The generating distributions of y on the j-th
expert is given by:

POIX @) = N(f() =y, 09, Q)



Table 1: Comparison of region specific predictive models (sp.=sparseness, s.f.=single feature, f.w.=feature-wise).

SLM | SAM DT ODT | BTLM | FAB/HME | LSL-SP | OT-SpAM LDKL
region global s.f. oblique s.f. oblique test-point
threshold threshold specific
region sp. X x X x X N.A.
predictor linear | f.w. nonlinear | constant linear f.w. nonlinear linear
predictor sp. x X x X x
ref. B71 | 167,341 | T[4 ]103339] [8] [11] [42] this paper [23]

for regression, where ¢; = (f;, o), and

N\ = 1 Y exp(fix) Y
POPCO) = Toep@en)  Trexp() '
for classification, where ¢; = f;.
In summary, the entire likelihood is given by:
PO X {0 AW Ey) = , D
¥ X . i
POMIX™ 9)p(EHIX" W) i)
n=1 j=1
3.2 Model Selection for OT-SpAM using FAB
Framework

In order to learn OT-SpAMs, as well as parameter estimation, we
have to address three model selection issues simultaneously:

M1: tree structure (the number of gates and experts, etc.).
M2: sparseness of region specifiers (logistic gates presented in (1)).
M3: sparseness of sparse additive experts.

To accomplish these model selection tasks, we employ FAB infer-
ence [14] for OT-SpAMs. Note that FAB has recently been used
for learning treed sparse linear models [11], and this paper extends
their framework to the learning of OT-SpAMs.

FAB inference maximizes the following Bayesian marginal log
likelihood:

PO ) =
QH 1% }_Ir\{:l, ig”&ﬁvzllix }_r]y:Q
Q({Cn}%:l)

where ¢ is an arbitrary distribution on {{"}"V,,_, and the optimal
qis g (& Pher) = pUCT Pl A% (XY, Let © be
® = [W, ®] where W = [wi, .., WG] and ® = [¢y, ..., p&].
Laplace’s method [43] is then applied to the numerator inside the
log-function in (8) as follows:

PN AN DY) = P03 N (N (X}, ©)

(©)

max Eq log
q

Dot Do
Y 2n) = ¥ 2n) 2
Py P Dot~ P Dy —
= 0N e G Fw V2 (0L ) T g e
©)
where
— 02 1lo {nxn, {wiG_
F =P :J’ gp( iI l_i } 1)’ (10)
n=t e, O OWIOW
= 1 o2 log p(Id™ X 9))
F, =—-P . 11
v T TP E T ay st an

® = [W, @] is the maximum complete likelihood estimator and

D. denotes the dimensionality of e. _ _
Although Eto et al. [11] asymptotically ignore |Fy: [*/2and |F o, |2,

using the law of large numbers, this paper considers the following

upper bounds to obtain a better approximation, using Hadamard’s

inequality [30]:

2 —2
Fopee X% o R X g log ki)
n=1_jeG; n=1_jeG; az(Wl ’ Xn)
, (12)
v o v o
|F_¢,- |1/2 < X C:r; Do, X 02 Iogpa(znlxn, gﬂj) D‘”j .
n=1 n=1 f']
(13)

By substituting (9), (12) and (13) into (8), we obtain factorized
information criterion (FIC) as follows:
n o

FIC{X, y}-, ©®) = I'I(’ZI%X LE{X y}=:®, q) , (14)
where h
L({X, y}¥=1. ©. q) = Eq log p({My, {1 (X300, ©)
» X

X ||wi X |If; * i
=76 o 10> 7 ey - 7 Wt tog ey

> X
- q(¢y) log ¢(&,

(15)
n=1_j=1
and
o = exp (Wi Xn) _ o log w(xn, i, j) (16)
v (1 +exp (Wi xn))2 o2(wi-xny
N & for regression
ni = ’ exp f. (x") (17)

Trexp 7 (77 for classification
[IW/||o and [I/7]lo are the cardinalities of W; and f}, i.e, the num-
ber of non-zero Wj and fja, respectively. Here, for computational
simplicity, we assume that the data is appropriately scaled in ad-
vance such that x» € [-1, 1]2.

Our new approximation, (12) and (13), results in a key differ-
ence from FIC for HMEs derived by Eto et al. [11], namely the
regularization terms (wave underline) are adjusted with the factors
aZ; and 7 (by setting a; = 1, and »5 = 1, (15) becomes con-
sistent with that of Eto et al. [11]). These factors come from the
diagonal elements of F \; and F @, Which are empirical Fisher in-
formation matrices and provide natural measurements on the like-
lihood spaces [1]. It is worth noting that the previous FIC (i.e.,
oy =1 and n7 = 1) regularizes the model without relation to
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Algorithm 1 FAB EM optimization for OT-SpAM

1: Input Data: {(X», y)}_,.
2: Input Parameters: D (maximum depth of the tree), d (stopping
condition), ¢ (shrinkage threshold).

3: Inmitialization: 7 = 0, L(®) = —co, {{}N,_, ~ UJ0, 1].

4: while L® - L&D > § do

5: M-Step: Update S, /10 and o(9 (regression) using Al-
gorithm 3.

6:  M-Step: Update WQ® using Gate Optimization as Algo-
rithm 2.

7. E-Step: Update ¢(#)((%) using (18).

8:  Expert Shrinkage: Eliminate “non-effective” experts us-
ing (19).

9: t=r+1.

10: end while

11: Post-processing: Execute hard-gate post-processing (see [11]

for details).

the metric space of p({}AL, , {(}H—1l{X}¥,=, ©). On the oth-
er hand, our regularizers (wave underline) can naturally adjust the
effect by taking the metric into account.

4. OPTIMIZATION ALGORITHM

To obtain the model which maximizes FIC (15), FAB employs
EM-like alternating optimization on ® (M-step) and ¢ (E-step).
The overall algorithmic framework is described in Algorithm 1.
The superscription (¢) represents the #-th EM iteration.

4.1 E-Step: updating variational distribution

From (15), we obtain the following update equation:

q(t)(é‘-r}) o(p(ynlxnl ¢5£—1)) l//(t)(xn’ l,]) (18)
ickE;
kfikony X kwikealy
exp - -2, —— 7Y
LT VAR 2N;
e iessiaeoae--e- R Lol
Py P

where N ; = PIZZI nppand Ny = . a<% In con-
trast to standard EM algorithms, (18) has the addftional terms marked
with the waved underline. These terms come from the regulariza-
tion terms in (15) (also marked with a waved underline). This caus-
es a shrinkage effect [11, 14] through the EM iteration, i.e, more
complex and smaller experts are penalized more, and we can safe-
ly eliminate “non-effective” experts from the model using a simple
thresholding rule as follows:

P
4O < 5

n=1

(19)

In practice, one could start from a sufficiently-large tree, after which
the “shrinkage” scheme of OT-SpAM would find the proper size
tree structure for capturing the data well. In this way, we have ad-
dressed the model selection issue M1.

4.2 M-Step: Learning Sparse Oblique Region
Specifiers
We update the i-th gate by solving the following optimization
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problem (the wi related terms in (15)):

wil) = arg ma?( q(t—l)(é‘n). 10g W(xn) i, j)

n=1_jeG;
kWi,  x >X
-, log( A (o))
n=1_jeG;

Let G be the index sets of experts on the left sub-tree of gate i,
and Girbe the index sets of experts on the right sub-tree of gate i.
We can re-write the problem as follows:

i kwik x x<
wild = arg max o(wi) - Tl log( ”jq(t 1)(59),
™ n=1_jeG;

(20)
where '
owy =X Ty Bt _expin:x)

n=1_jeG; J=G; Q((J") 1 +exp(wWi-Xm) '
+ > q((n)  PES= a(&") og 1
n=1je6; ! yee, 4€) 1+exp(wi-xm)

@D

This problem can be seen as a sparsity-regularized generalized 1-
ogistic regression problem: i) unlikethe standard regregssion, here

; ; peey  9G) precAG)
the response is any number in [0, 1] ( P and e

in this problem) and ii) there is a weight for each instance: /l(ab)

Problem (20) is non-convex (due to the L o—regularizationf and
we have adopted a greedy strategy [38] to get an approximate solu-
tion. Details are shown in Algorithm 2. Let S € [D] be the set of
selected features. Also, we denote the maximizer of Q as follows:

Wi(S) = max Q(W(S)), (22)
wi(S)

where solving (22) is a constrained, weighted logistic regression
problem. At each iteration, we selected the feature that maximizes
the gradient absolute value |V;Q(W9)|, which is

. <X
Vaow)| = ( q@") - r"Y)-xqV .,  (23)
J<G;

where ° is the Hadamard product, and

<Gz q(é}:N) _ 1
} o, q(é}iN) 1+ exp(_wi(k) . Xl:N)

R1:N —

and then solved the constrained weighted logistic regression prob-
lem, until

»x X
QW) — QW) < log( 174 ).

n=1_jeG;

(24)

was satisfied, where (k) is the iteration index in Algorithm 2. In
this way, we have addressed the model selection issue M2.

4.3 M-Step: Learning Local Experts

In order to optimize the j-th local expert /7, we introduce the
following model:

fia(x) = BjagmX). (25)

m=1



Algorithm 2 Gate Optimization for OT-SpAM
I: fori=1,..,Gdo

2:  Initialization S® = @, k = 0, w® = 0, ,uifN(k)
1/(1 + exp(will - x:N),

3:  while TRUE do

4: Select feature d(® = arg max ses® 1VaQ(w)| accord-
ing to (23). '

5: k=k+1. '

6: Update §(k) = §‘k)ud(k), wi = W(S(ik)), #;:N(k) =
1/(1 + exp(-wilk) . x1:N),

7 if (24) is satisfied then

8: k=k -1, and Break.

9: end if

10:  end while
11:  Output wik),
12: end for

Algorithm 3 Greedy Additive Regression for OT-SpAM
1: Input Data: {(x* y)}V,_,, ¢2()), o-y’l).
2: forj=1,..., Edo
. egs _qs . 1) = _ _ PN AR _
3:  Initialization §® =@,k =0,a=  ,_ VYN, f ;7=
a, Residual R(W = N —fj(k)(}"N).

4 while TRUE do

5: k=k+1.

6: Select feature d® using (27).

7 Fit/ ¢, (by updating BEM) using (28) A

8 Update §0 = SYUd®, {9 = g+ acs 7 5(%0)-

9 Update residual R using (29) for regression and (30)
for classification.

10: if (32) is satisfied then

11: k=k-1,and Break.

12: end if

13:  end while .
14: Updatej;(t) =j).(k), gj(t) = kRWKk,.
15: end for

where gn, is a pre-defined smooth basis function and M is the num-
ber of basis functions (in our experiments, we use P-spline func-
tions as gm). Here our parameterization is changed to ¢; = f;,

where f3; =(,B1111V1 e, ,b’ljﬂB We .the.n update the j-th local ex-
pert by solving the following optimization problem:

KR - nn -
AP = arg max q" 1)(Cn) log p(v'Ix". B, ”Z;t Y)

n=1_j=1
x ; P

- T s 105 i 6)
J=1 n=1

where kBjkwo = KKBLM Koo, KAEM Koo, ..., KM KeoKo. No-
tice that we can simply ignore o3t~ when we consider the clas-
sification case.

Problem (26) is reduced to the optimization of weighted GLM
under group sparsity regularization. This paper adopts the greedy
optimization method summarized in Algorithm 3. Note that ex-
isting works on greedy group selection [28] (or additive forward
regression [27]) include proposals for addressing the greedy group
feature selection problem. In contrast to these, Algorithm 3 has the
following differences: i) at the feature selection stage, [27] s- elects
the feature that maximizes the alignment between residuals

and fitted responses. Here we directly select the feature with the
maximum gradient norm:

d® = arg ma(z) kgl:M(Xé:N)(R . 4o (G:N))kz- 27)
aﬁesj

This gradient criterion avoids having to fit the model O(D) times,
which makes the selection process much faster; ii) [27, 28] use an
orthogonal matching pursuit type fitting procedure [38] (that is, af-
ter selecting one new feature, the model is re-fitted using the newly
selected feature pool). Rather than this approach, we use a match-
ing pursuit [29] type method to speed up the algorithms, i.e., we just
add the new fitted univariate function without re-fitting the model.
The fitting equation (derived by solving a weighted least squares)
is described as follows :

Bi" = (G"HG) 'G"R®. (28)

where G € R¥<M is the feature matrix such that G nm = gm(x%)
and H € RN¥xN is the diagonal weighting matrix such that H,, =
q® (5] ® These special designs make the algorithm much faster
than the procedures in [27, 28] by avoiding repeated model fitting
and re-fitting. Though it might be less accurate in feature selection
and model fitting (but not too much when the basis functions are not
highly correlated with each other), the hard-gate post-processing
proposed in [11] (the step 11 of Algorithm 1) makes the final model
more stable and reliable, as we will see in Section 5.

The difference between classification and regression is in the up-
date of the residual. For regression, we can naturally define the
residual as follows:

R(k) =yl:N _f'-‘-(ik)(XI:N) 29)

The residual of logistic loss for classification is not so obvious, but
we follow [17], which defines it in terms of the updating direction
of the Newton step as follows:

N :N(k)
RO = Y (30)
NGO o (1 _ , LNy
My ¢ M )
where
AR (s1:N
LN — exp(f; "~ (x*N)) 31)
7 1 + exp(f; P (x1V))
The stopping condition is defined as follows:
X N
4 log pymixn B3P, o) (32)

n=1

X x
—logp(/x™ /0, 6D <log(" 47T

n=1

In this way, we have addressed the model selection issue M3.

5. SIMULATION STUDY: MODEL SELEC-
TION AND VISUALIZATION

This section presents results of simulation studies and demon-
strates our FAB-based model selection for OT-SpAMs. In order to
make OT-SpAMs interpretable, we proposes a visualization method
that employs individual local sparse additive experts.

5.1 Simulation Setup

We generated N = 5000 data points in which each instance
is described by D = 15 features, and the features are uniformly
distributed in [0,1], i.e. X ~ UJO0, 1]P. The true tree structure is
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Figure 1: Estimated additive functions for Expertl in the simulations. The horizontal and vertical axes represent, respectively, the

original feature and the estimated sparse additive feature.

shown in (A). It has 4 experts, each of which uses 2 — 3 features,
and the partition nodes use linear functions of 2 features.

2.5X9 —1.6X10 < 0.613

1.5X6 —0.7X4 < 0.358 1.6X3—0.5X12 <0.715

Expert 1  Expert 2 Expert3  Expert4

(A) True tree model

We generated response Y of the instances, in accord with the ex-
perts they belongs to, in the following way:

e Expert1: Y = 5sin(zX1) +15(X2 —0.5)2 —4X7 +1 +¢,
o~ 0.0IN (0, 1).

e Expert2: ¥ = 7/(1 + exp(5 — 10X5)) + 5sin(zX?3) —
5Xg+2+2z,2~0.0IN (0, 1).

e Expert3: ¥ =8|X1—05|+7(BXg—2)2 -4 +¢,¢6~
0.01N (0, 1).

e Expert4: Y = 5cos(2zX2) +5Xg +21og(100X10 +3) -
3+¢,6e~0.0IN(O, 1).

In this simulation, we set the initial tree-depth to D = 4 (i.e., the
initial number of experts was 16), the shrinkage threshold to ¢ =
0.06N, and the stopping threshold to 6 = 1075. Also, since oblique
region specifiers using many features are hard to interpret,
we set the maxim um number of features used in each partition node
to 3. Additionally, we employed P-spline functions (a family of B-
splines with a smoothness penalty [10]) as g in (25). We chose
the penalty parameter for P-splines as 0.5, the spline degree as 3,
the number of knots as 6.

5.2 Model Selection Results

The estimated tree structure is shown in (B). There were 16 ex-
perts at the start, irrelevant experts were gradually pruned from the
model by means of FAB regularization, and, at the convergence
point, our method almost completely recovered' the true tree struc-
tures with exactly the same features in each gate (oblique hyper-
plane).

IThe partition functions in (B) have been properly scaled for com-
parison with the functions in (A), since scaling the functions does
not change the decision boundary.
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2.5X9 — 1.486X10 < 0.663

1.5X6 — 0.683X4 <0.369 1.6X3—0.506X12 < 0.698

Expert1 Expert2 Expert3  Expert4

(B) Estimated tree model

Figure 1 shows the estimated additive functions of Expertl. S-
ince we employ a matching pursuit type of optimization in the
M-step, there is marginal estimation error in the estimated fea- ture
functions before post-processing (green curves). After post-
processing, the true (blue curves) and estimated curves (red curves)
are quite consistent. Although we omit results for the other experts,
we obtained similarly good estimation results for those as well.

These results empirically demonstrate strong model selection ca-
pability in addressing M1, M2 and M3 simultaneously.

5.3 Visualization of Local Sparse Additive Ex-
perts

Since each sparse additive feature fja is (feature-wise) nonlin-
ear, visualization is critically important to maintain model inter-
pretability. This paper proposes a stacked area plot to visualize
sparse additive features. Figure 2 shows the visualization for Ex-
pertl (we shifted Expertl to the negative side in this figure to more
easily explain our visualization method). The left-hand figure is a
simple line plot of estimated feature functions w.r.t. X1, X2, and
X7. The line plot would be difficult to see if several features were
selected and overlapped one another in a single plot. To avoid this,
we employ a stacked area plot that is constructed as follows. First,
individual feature functions are separated into positive and negative
sides, as shown in the middle column of Figure 2. The s- tacked
area plot was then built by combining positive and negative stacked
area plots (the right-hand figure). As is shown, we are able to avoid
“ugly” overlapping and can clearly see how each input fea- ture
“nonlinearly” contributes to the target signal. We visualize the
stacked area plot for each expert, and the combination of standard
tree visualization with the stacked area plots provides a full picture
of nonlinear model behaviors.

6. BENCHMARK EVALUATION OF PREDIC-
TIVE ACCURACY

We evaluated OT-SpAMs on 24 public benchmark data sets, avail-
able from the UCI Machine Learning Repository [2], for both re-
gression and classification tasks. Table 2 summarizes the statistics
for these data sets. We used the same initial tree-depth and ter-
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Figure 2: Stacked area visualization for the learned Expert] in
the simulation study. The horizontal and vertical axes repre-
sent, respectively, the original feature and the estimated sparse
additive feature.

mination conditions as in the simulations and evaluated root mean
squared error (RMSE) for regression and accuracy in classification.
For regression tasks, we compared OT-SpAM with the following
methods: OLS (ordinary least squares using the full set of the fea-

tures), RegTree’ (a classical regression tree model [4]), FAB/HME [11],

AM (additive models [16] using the full set of the features), and
SVR-RBF [36]. For classification tasks, we compared OT-SpAM
with the following methods: LLR (linear logistic regression using
the full set of the features), CART? [4], LSL-SP* [42], FAB/HME (we
adopted the method described in [11] with logistic model), LD-
KL [23], ALR (additive logistic regression [16] using the full set
of the features), DLR’ [6], and SVM-RBF® [9]. The parameters in
SVR-RBF, LSL-SP, LDKL, DLR, and SVM-RBF were optimized
on the basis of 10-fold cross validation on training data. Note that
we used all features for linear and additive models (OLS, AM, LLR
and ALR). The primary focus here was on accuracy evaluation, and
they performed better with all features (without sparse regulariza-
tion).

Table 3 and Table 4 report the 10-fold averaged cross validation
RMSE and classification accuracy, respectively. From these results,
we have the following observations:

= For regression tasks, OT-SpAMs achieved the lowest RMSE val-
ues in most cases. Both AMs and FAB/HMEs also performed

much better than OLS and RegTrees. OT-SpAMs took advan-
tages of both methods and performed competitively with SVR-
RBF (or sometimes even outperformed it).

* For classification tasks, similar observations were obtained, i.e.,
FAB/HMEs and ALRs performed better than LLRs, and OT-

SpAMs usually outperformed both them and state-of-the-art ad-
ditive models (ALRs and DLRs). LDKL also performed well,

2We use the built-in RegressionTree class in MATL,AR
3We use the built-in ClassificationTree classin MATLAB
“http://blogs.bu.edu/joewang/code/

Table 2: List of benchmark datasets.

[ID] Name | #Instances | #Features | Task |
DI Auto-mpg 398 4 Regression
D2 Boston-housing 506 13 Regression
D3 Stock 950 9 Regression
D4 Space-ga 3107 6 Regression
D5 Abalone 4177 b Regression
D6 ParkinsonM 5875 20 Regression
D7 Cpusmall 8192 12 Regression
D8 Kinematics 8192 b Regression
D9 Puma8nh 8192 3 Regression
D10 Comp-acti 8192 21 Regression
D11 Ailerons 13750 40 Regression
D12 Cadata 20640 8 Regression
D13 Banana 400 2 Classification
D14 Australian 690 14 Classification
D15 Pima Diabetes 768 I Classification
D16 Fourclass 862 2 Classification
D17 Splice 1000 60 Classification
D18 Banknote 1372 4 Classification
D19 Titanic 2201 3 Classification
D20 Svmguidel 7089 4 Classification
D21 EEG-eyestate 14980 14 Classification
D22 Magic04 19120 10 Classification
D23 Cod-ma 59535 3 Classification
D24 Ijcnnl 141691 2 Classification

but it is worth noting that LDKL produces a predictor at every s-
ingle data point and that no interpretation of regions is provided,
as may be seen in Table 1. We observed that OT-SpAMs per-
formed slightly worse than SVM-RBFs and sacrificed accuracy
for interpretability, though, except for D21, the sacrifice was not
significant.

« On these data sets, OT-SpAM usually output treed models with
5-8 experts, and these models were reasonably interpretable. OT-
SpAM selected different fractions of features, depending on the
data sets used.

In summary, we conclude that OT-SpAMs sacrificed minimum ac-
curacy loss for interpretability, w.r.t. fully non-parametric method-
s, by maintaining interpretable treed region structures and feature-
wise sparse nonlinear expert structures.

7. REAL WORLD APPLICATION: SALES
FORECASTING

In the retail industry, sales forecasting is a key component of
advanced store management. Let us consider three scenarios:

A) store inventory management requires forecasting every 6 hours
for 2-day to 1-week periods. Accurate forecasting reduces
disposal loss, and model interpretability lets store managers
safely use a forecasting-based ordering system.

B) store assortment planning requires forecasting every 1 day for
1-week to 3-week periods. Accurate forecasting increases
revenue w.r.t. shelf-space, and model interpretability helps
marketers to hypothesize good assortment strategies.

C) production planning requires forecasting every 1 week for 2
month periods. Accurate forecasting reduces supply-chain
inventory losses, and model interpretability helps marketers
to plan release timing for new products.

Shttp://www.cse.wustl.edu/~wenlinchen/project/DLR/ We applied OT-SpAM to sales forecasting of sweet bakery prod-

®For SVR-RBF and SVM-RBF, we use the LIBSVM package [5].
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ucts in a middle-size supermarket located in a residential area of



Table 3: Comparison of test RMSE values on benchmark datasets. The best and second best methods (except SVR-RBF) are

highlighted in bold and bold italic faces, respectively.

D OLS RegTree FAB/IME AM OT-SpAM SVR-RBF

DI 510 %053 6.67£133 329 %032 2.88% 0.43 279 £ 0.52 313 £04%
D2 5.38+0.86 9.06+2.92 3.72+0.96 3.65+0.72 3.41+0.55 5.65 +0.80
D3 2.32+0.09 1.99 +0.34 2.28+0.39 1.33%0.11 1.02 +0.10 0.91 *0.09
D4 0.14+0.01 0.28 +0.03 0.13 + 0.01 0.13+0.02 0.12 +0.02 0.10 +0.01
D5 2.32£0.17 5.57+0.22 2.27+0.15 2.31%0.10 2.22+0.12 2.17+0.11
D6 7.30%0.10 0.90 + 0.34 4.96 % 0.57 5.11£0.06 2.99+0.19 2.95+0.07
D7 16.2+0.31 7.57+0.21 5.14 £ 0.62 3.79+0.22 3.26 + 0.35 4.56 +0.49
D8 0.29 + 0.00 0.40 + 0.01 0.24 + 0.01 0.20 + 0.00 0.19 + 0.00 0.07 +0.01
D9 4.67 +0.09 8.44 +0.31 418+ 0.21 424 +0.10 3.31+0.08 3.34 £0.09
D10 15.5+0.30 6.73 £0.28 5.12 +0.40 3.57+0.18 2.79 + 0.61 5.07+0.35
DIl | (2.50+22)10% | (4.27+0.1)-10° | (1.70£0.0)-10% | (1.73%0.0)10% | (1.66+0.0)-10% | (5.97 +1.2) 10~
DI2 | (7.48+0.1)-10* | (12.6%0.3)104 | (6.82+0.1)-10* | (6.48*0.1)-10* | (5.97+0.1)-10¢ | (11.8+0.0) 104

Table 4: Comparison of test classification accuracy on benchmark datasets. The best and second best methods (except SVM-RBF)

are highlighted in bold and bold italic faces, respectively.

ID LLR CART LSL-SP FAB/HME LDKL ALR DLR OT-SpAM || SVM-RBF
DI3 | 68.5+44 | 84.7+6.4 | 69.7+7.1 | 76.7+85 | 88.7+4.6 | 76.2+8.1 | 67.0x7.1 | 82275 || 91.3+4.0
D14 | 84.6+35| 86.2+42 | 86.2+3.7 | 853+3.7 | 85.6+*4.1 | 86.5+2.4 | 86.5+3.5 | 87.1+3.9 || 855+3.7
D15 | 69.6+4.7 | 73.9+8.0 | 74964 | 69.7+83 | 75.7+*79 | 76.5+ 7.5 | 76.5+6.7 | 77.5+7.1 || 75.8 £ 8.8
D16 | 75.0+x6.1 | 95.8+22 | 78.6*6.2 | 76.5+6.0 | 96.8+3.3 | 90.0+x3.4 | 75.8+4.7 | 96.1+ 1.8 || 99.8+£0.5
D17 | 80.4+33 | 90.7+3.6 | 83.0+x5.8 | 79.2+33 | 854+1.1 | 90.7£22 | 90.8+2.0 | 92.5+2.2 || 86.1 3.0
D18 | 86.0+25| 97415 |98.1%x1.6934%£19|999+0.2|989+09 |88.8x14|99.1+x0.7 || 100£0.0
D19 | 77.1£04 | 79.1+£0.7 | 78.1+x04 | 77.6 0.5 | 79.0+x0.7 | 77.8+03 | 77.6 03 | 78.3+x 0.5 || 78.5+0.0
D20 | 89.1+£0.5| 96.7+£0.8 | 93.7+20.7 | 93.8+09 | 96.2+1.1 | 96.8+0.7 | 95510 | 97.1+0.6 || 96.9 0.1
D21 | 58.0+0.6 | 82.7+x0.7 | 76.5+ 1.2 | 60.8 14 | 551%£0.0 | 57918 | 55.1%£0.1 | 59.7+23 | 81.6%0.1
D22 | 789+1.0| 83.8+0.8 | 81413 | 81.7+14 | 85.0+x0.8 | 849+08 | 78609 | 858+ 1.1 || 87.2+0.1
D23 | 89.6+04 | 93.8+03 [ 91.1£03 [ 91.0£05 | 94.0+£1.2 | 94.0x0.2 | 77.6+04 | 942+ 0.2 | 95.6+0.0
D24 1 92.1+£05(97.4+04]904+£03 | 93.9£22|942+1.7|93.7£06|91.1+£0.8| 95.6+19 | 98.6+0.1

Tokyo’. Our primary target scenarios were A) and B), and we
set the target variable to total sales of sweet bakery products for one
day one week later. We used three years of historical data whose
time resolution was daily. The first two years (731 sam- ples) were
used for training, and the other year (365 samples) was used for
testing. Table 5 summarizes variables used for the fore- casting.
There are 30 input features in total. In addition to sales information
(x20, x21 and the target variable), we independently collected
weather related variables (x2-x19) and also added calen- dar
information (x22-x30). All numerical variables, including the
target variable, were standardized in advance. Experimental set-
tings were the same as those of Sections 5 and 6, except the initial

tree-depth (here we use D = 5). Figure 3 shows the forecasting re-
sults for the test period. As can be seen, OT-SpAM achieved fairly

good forecasting.

_X17 + 0.55X2() < -0.97

X20 <1.1 ng < 0.49

Expert4 Expert5

Expert 1 —X21 +0.11X59 < —0.7

Expert2  Expert3

(C) Estimated tree model for sales forecasting

"The data has been provided by KDP-SP Co.,
http://www. ksp-sp.com.

LTD,
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The estimated tree structure is shown in (C). The region-specifier
employed average pressure (x17), sales histories (x20 and x21), and
weekday flag (x29). Taking into account the fact that average
pressure in Tokyo is relatively high during May to September, the
region-specifier identified the following clusters:

= Expertl: in-season (high average sales) during early summer to
autumn.

Expert2: off-season (low average sales) during early summer to
autumn.

Expert3: other season (middle average sales) during early sum-
mer to autumn.

= Expert4: weekday during autumn to early summer.
Expert5: holiday during autumn to early summer.

Figure 4 provides our stacked area plot for individual experts.
We can characterize the experts as follows:

« Expertl: Products in this category (sweets bakery) are sold a lot
on Friday. The largest bias value among the experts supports our
hypothesis that this cluster corresponds to in-season.

« Expert2: The small responses (i.e., the scale of the vertical axis
is small) supports the hypothesis that this cluster corresponds to
off-season, and the sales are small without relation to weather.

« Expert3: The response for daylight (x13) is high in the middle
area of the horizontal axis. Since mid-summer daylight hours are
long in Tokyo, this result indicates that sunny days tend to have
large sales.

« Expert4: We can observe a strong response w.r.t the sales of 1
week previous but the peak is somehow shifted to the left-hand
side. This might indicate a natural decrease in sales following a
promotional campaign.



—actual
—forecast

P -way

Figure 3: Sales forecasting results for the test period (one year) using OT-SpAMs.

Table 5: List of variables in the sales forecasting dataset. N
and B stand for numerical and binary values. weatherl and
weather2 are forecasting (1 week ahead) and history (1 week
ago), respectively.

1D riame value type

x1 dates from Jan. Ist. N date

x2 rainfall forecast (mm) N weatherl

x3 ave. temp. forecast (degree) N weatherl

x4 daylight forecast (hours) N weatherl

x5 snowfall forecast (cm) N weatherl

X6 humidity forecast (%) N weatherl

x7 cloudiness forecast (10%) N weatherl

x8 ave. pressure forecast (hPa) N weatherl

x9 max temp. forecast (degree) N weatherl

x10 min temp. forecast (degree) N weatherl

x11 rainfall history (mm) N weather2

x12 | average temp. history (degree) N weather2

x13 daylight history (hours) N weather2

x14 snowfall history (cm) N weather2

x15 humidity history (%) N weather2

x16 cloudiness history (10%) N weather2

x17 ave. pressure history (hPa) N weather2

x18 max temp. history (degree) N weather2

x19 min temp. history (degree) N weather2

x20 sales (1 week ago) N sales history
x21 sales (2 weeks ago) N sales history

x22 Sunday B calendar information
x23 Monday B calendar information
x24 Tuesday B calendar information
x25 Wednesday B calendar information
x26 Thursday B calendar information
x27 Friday B calendar information
x28 Saturday B calendar information
x29 Weekday B calendar information
x30 Holiday B calendar information

= Expert5: The sales are low on Saturdays.

The above observations can be transformed into insights for im-
prove store operations, such as:

A) store inventory management: In order to avoid excessive in-
ventory, store managers should take into account the strong
possibility of a post-promotional-campaign slump in sales.
Further, store managers should increase the number of dis-
played items of this product category, as this may increase
store revenue.

B) store assortment planning: store managers should consider pos-
sible adjustments to the product line-up in this product cate-
gory since the sales trends may change.

These insights are still hypotheses and must be evaluated in real
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stores, but we believe that the above results demonstrate high inter-
pretability of OT-SpAMs in the real world applications.

8. SUMMARY AND FUTURE WORK

We have proposed oblique treed sparse additive models, novel
extensions of generalized additive models for heterogeneous da- ta
analysis that employs the learning of hierarchical mixtures of
sparse additive models. We have presented a Bayesian learning al-
gorithm which fully automates space partitioning and feature selec-
tion, making the proposed approach nearly parameter firee. Promis-
ing empirical results have been obtained for both simulated and
real-world data. Future work will address the theoretical under-
standing and computational efficiency of OT-SpAMs, as well as
extensions to such more general data mining problems as multi-
class classification and Poisson regression.
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