内容目录

第二章 2023-2028 年 OLED 市场前景及趋势预测	3
第一节 OLED: 需求复苏+新需求拉动+国产替代,迎来发展新机遇	3
一、OLED 性能更优,AMOLED 主流趋势显现	
二、中国加大 OLED 产能布局,京东方开启首条 8.6 代线	4
第二节 OLED 屏价 24H1 有望持续上涨,长期供需结构改善	6
一、短期:消费电子持续拉货,结构性供需改善有望持续涨价	6
二、OLED 下沉至中低端手机市场,中尺寸终端加速渗透	7
(1) 小尺寸: OLED 智能手机加速渗透中低端市场,折叠屏放量拉动	7
(2) 中尺寸: IT 和车载渗透率有望提升,产能消耗更大	8
第三节 有机发光材料,国产替代正当时	10
一、OLED 终端材料壁垒较高,受益于国产替代迎来发展机遇	10
二、有机发光材料	12
(1) 发光主体材料(Host 材料)	
(2) 发光掺杂材料(Dopant 材料)	13
(3) 发光功能材料 (Prime 材料)	13
三、前端中间体材料	14
第四节 重点企业分析	14
一、中游面板	14
(1) 京东方	14
(2) 维信诺	15
(3) 深天马	16
二、上游材料	16
(1) 莱特光电	16
(2) 奥莱德	18
(3) 瑞联新材	18
(4) 万润股份	19
第三章 OLED 企业关系营销策略研究报告	19
第一节 关系营销的必要性	
一、从现有顾客中获取更多顾客份额	20
二、减少销售成本	20
三、赢得口碑宣传	21
四、员工忠诚度的提高	21
第二节 关系营销管理概述	21
一、关系营销管理	21
(1) 顾客获取阶段(Customeracquisition)	21
(2) 顾客挽留阶段(Customerretention)	22
(3) 顾客补救阶段	23
二、企业关系营销的特征	23
(1) 关注性	23
(2) 合作性	24

(3) 服务性	24
第三节 企业关系营销存在的问题	24
一、对关系营销理解缺乏战略高度	24
二、员工过度关注顾客单次消费	24
三、缺乏维系忠诚顾客的机制	25
四、与同行缺少协作	25
第四节 企业实施关系营销的策略	25
一、树立正确观念,增强全员关系营销意识	25
二、建立有效激励措施,增强员工服务意识	25
三、培育顾客忠诚度	26
四、加强在竞争中合作,促进共赢	26
第五节 客户的关系营销与维护	26
一、以全面质量营销和品牌优势树立企业形象	27
二、依靠信息和网络技术实现全面互动	27
三、以价值让渡系统和感情投资搭起企业与顾客之间友谊的桥梁	28
第六节 以海底捞为例如何与客户建立正确的关系营销	28
第四章 OLED 企业《关系营销策略》制定手册	30
第一节 动员与组织	30
一、动员	30
二、组织	31
第二节 学习与研究	32
一、学习方案	32
二、研究方案	32
第三节 制定前准备	33
一、制定原则	33
二、注意事项	34
三、有效战略的关键点	35
第四节 战略组成与制定流程	37
一、战略结构组成	37
二、战略制定流程	38
第五节 具体方案制定	39
一、具体方案制定	39
二、配套方案制定	41
第五章 OLED 企业《关系营销策略》实施手册	42
第一节 培训与实施准备	42
第二节 试运行与正式实施	42
一、试运行与正式实施	42
二、实施方案	43
第三节 构建执行与推进体系	43
第四节 增强实施保障能力	44
第五节 动态管理与完善	45
第六节 战略评估、考核与审计	46
第六章 总结: 商业自是有胜算	46
第一章 前言	

建立并维持与顾客的良好关系是营销成功的基本保证。顾客是企业生存和发展的基础,市场竞争实质上就是争夺顾客。当前的市场竞争加大了赢得新顾客的难度和成本,因此我们要将关系营销的重点转向维持老顾客,显得尤为迫切与重要。《哈佛商业评论》的一项研究报告指出:再次光临的顾客可带来 25%~85%的利润;另一项调查表明:1位满意的顾客会引发 8 笔潜在的生意,其中至少有1 笔成交;1 位不满意的顾客会影响 25 个人的购买意向;而争取1位新顾客的成本是保住1位老顾客的5倍。

以往在营销活动中,有相当一部分企业只重视吸引新顾客,而忽视维持现有顾客。

那么,当前企业关系营销存在哪些问题?企业实施关系营销的策略有哪些?如何对客户的关系进行营销与维护?

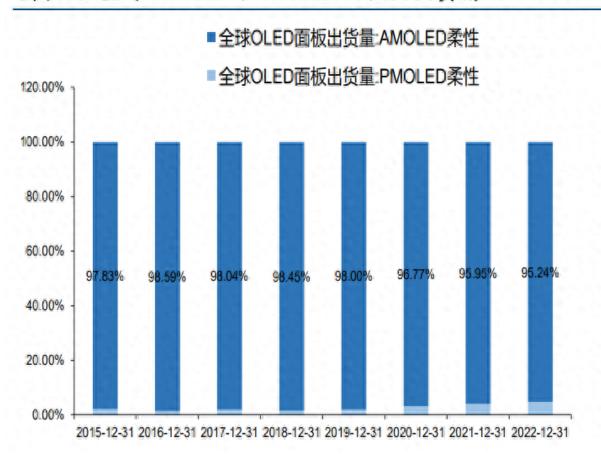
下面,我们先从 OLED 行业市场进行分析,然后重点分析并解答以上问题。

相信通过本文全面深入的研究和解答,您对这些信息的了解与把控,将上升到一个新的台阶。这将为您经营管理、战略部署、成功投资提供有力的决策参考价值,也为您抢占市场先机提供有力的保证。

第二章 2023-2028 年 OLED 市场前景及趋势预测

第一节 OLED: 需求复苏+新需求拉动+国产替代, 迎来发展新机遇

一、OLED 性能更优, AMOLED 主流趋势显现


OLED (OrganicLight-EmittingDiode)即有机发光二极管,指由极薄的有机材料涂层和玻璃基板构成,且当电流通过时会发光的有机半导体。OLED 具有自发光特性,作为新一代显示技术,其显示性能相比 LCD 更优异,具有显示效果佳、耗电低、柔性高和超轻薄等优点,广泛运用于手机、汽车电子、智能穿戴设备等产品的屏幕上。OLED 显示屏幕结构大幅简化,更轻薄、省电、抗摔。从OLED 显示面板结构来看,液晶材料被有机发光材料替换,导光板,增光片和扩散片不再需要,偏光片的数量也有所减少,因此 OLED 显示屏拥有更纤薄的屏幕结构。从功耗比来看,OLED 屏幕更省电,对于追求高续航能力的智能手机来说缓解电池的压力。由于组成核心发光材料的组件数量大幅下降,OLED 屏幕的抗震性能明显提升,抗摔性能大幅提升。

OLED 按驱动方式可以进一步划分 AMOLED (ActiveMatrixOLED, 有源矩阵 OLED) 和

PMOLED (PassiveMatrixOLED, 无源矩阵 OLED),目前市场上 OLED 产品主要以 AMOLED 为主。PMOLED 的结构简单,每个像素点由分立的阴极阳极控制,不需要额外的驱动电路,太多的控制线路限制其在大尺寸高分辨率屏幕上的应用。AMOLED 则是通过驱动电路来驱动发光二极管,最大程度减少了控制线路的数量,使其具备低能耗,高分辨率,快速响应和其他优良光电特性,因此 AMOLED 逐渐成为 OLED 显示的主流技术。

生产制程上,OLED 与 LCD 类似,分别是前段 Array、中段 Cell 和后段 Module Assembly。前段阵列工艺中,OLED 与 LCD 一样,都是先对玻璃基板进行清洗,接着 CVD 和溅射,然后进行涂胶、曝光和显影,后面进行湿法或是干法刻蚀,再进行剥离,如果剥离不合格则重新回到清洗,最后再退火,并检查。中段成盒工艺中,LCD 和 OLED 的工艺流程区别较大,LCD 是将 TFT 基板与 CF 基板拼合,进一步加工成 TFT-LCD 面板,而 OLED 通过多次蒸镀完成有机发光层的沉积;后段模组工艺,OLED 省去了一层偏光片以及背光源的贴合。

图表5: 全球 AMOLED 和 PMOLED 面板出出货情况

二、中国加大 OLED 产能布局, 京东方开启首条 8.6 代线

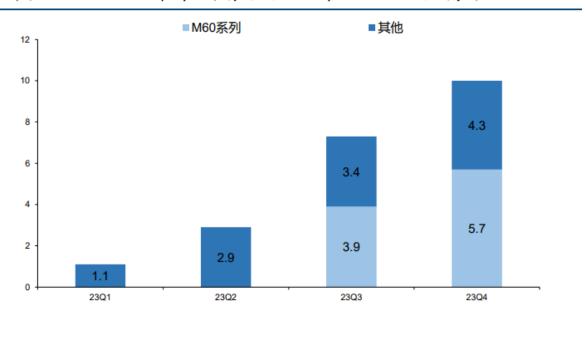
若从技术的发展路径来看,显示技术的发展大致可以分为四个阶段:第一个阶段:1897年,

世界上第一台 CRT 诞生,实现了电信号向光输出的转换。随着技术工艺完善,20 世纪 50 年代开始,随着 CRT 技术的产业化,黑白 CRT 电视和彩色 CRT 电视成为生活中最重要的显示设备。第二个阶段: 20 世纪 90 年代,等离子技术、液晶技术并行。2000 年后,随着液晶技术的完善,其在显示效果、成本等诸多方面均显著超越等离子技术,等离子显示逐步退出市场。目前液晶显示技术已是全球最主流的显示技术。第三个阶段: 随着材料技术的发展,OLED 技术出现并实现产业化。2006年之前,OLED 面板多为 PMOLED 面板,主要针对小尺寸显示器件。2008年诺基亚推出了第一台应用AMOLED 显示屏的手机,随后索尼、LG 推出小尺寸 OLED 电视; 2010年,三星大举推进 AMOLED 技术,并在其高端手机中广泛使用 AMOLED 面板,OLED 的商业化进程得到了实质性进展。第四个阶段: 随着 OLED 技术的逐渐进步,OLED 的技术应用在电视等大屏幕产品上也逐渐开始体现。2014年,LG 推出了全球首批 4KOLED 电视,并于 2015年在国际消费电子产品展览会(CES)上推出了多款 OLED 电视产品; 2019年,LG 发布了全球首款 8KOLED 电视,OLED 的技术应用已进入新的阶段。

从 OLED 发展历程来看,2000 年后 OLED 技术进入快速发展期,向大尺寸、高分辨率、高亮度、高色彩饱和度、低功耗的 OLED 显示屏升级。以三星为代表的韩国企业在 AMOLED 技术方面取得了领先地位,将 AMOLED 应用于智能手机、平板电脑等移动设备上。以索尼为代表的日本企业在PMOLED 技术方面取得了突破,将 PMOLED 应用于电视机等大尺寸显示器上。2010 年代至今,OLED 技术进入了成熟期,各种类型的 OLED 显示屏已经广泛应用于各个领域,出现了新的概念和技术,如透明 OLED、可折叠 OLED、可卷曲 OLED等。

目前全球 OLED 产能主要集中在韩国和中国,中国 OLED 行业起步较晚,在政府政策支持下,中 国 OLED 产能端增长迅速,已形成京津翼、珠三角、闽台、长三角、中西部五个行业集群。2018 年 中国本土面板制造商京东方、天马、和辉光电等企业大规模投资建厂,大量释放产能,加速推进 OLED 产业的发展。Trendforce 最新数据显示,中国 OLED 面板产能占比为 43.7%,韩国为 54.9%。 京东方作为国内在柔性 OLED 领域布局早、技术优、市场应用广的企业,带领中国柔性 OLED 产业逐 步成为全球产业版图中的重要一部分。京东方于 2015 年投建中国大陆首条柔性 OLED 生产线,柔性 OLED 出货量连续多年稳居国内第一,全球第二。2023年上半年,京东方柔性 AMOLED 出货量突破 5 千万片,同比增长近80%,覆盖超45个终端品牌客户,包括华为、OPPO、LGE和联想等各大品牌。 近期京东方公告拟投资 630 亿建设国内第一条的 8.6 代 AMOLED 产线,设备投资六成以上,其中公 司投资占比 52. 36%。新代线规划 32k/月产,主攻中尺寸 IT,项目分阶段两期建设,周期 34 个 月,预计 26Q4 建成第一期量产。深天马目前正在释放的产能主要是武汉天马,产能满产 4000+万 片,主要用于手机,厦门TM18为LTPO六代线,2024年产能逐步释放。维信诺控股昆山第5.5代 AMOLED 生产线,持续优化产品结构,批量交付一线品牌客户,增加高附加值产品供货,并将通过 提升运营效率以提高产线产能;固安第6代柔性 AMOLED 生产线产能持续释放,稼动率快速爬升至 较高水平;参股的合肥第6代柔性 AMOLED 生产线量产搭载低功耗动态刷新率技术和折叠等新技术 的产品, 稼动率持续提升。TCL 科技目前武汉 T40LED 一期 15K 产能, 二三期产能按计划推进, 持 续进行技术迭代和新产品开发。

第二节 OLED 屏价 24H1 有望持续上涨,长期供需结构改善


一、短期: 消费电子持续拉货. 结构性供需改善有望持续涨价

消费电子见底复苏,拉动安卓系 OLED 屏需求。2023 年 9 月,华为发布新品带动,新型消费电子产品更新迭代,手机产品性能升级、折叠屏持续新品推出,叠加产业链前期库存去化,品牌提前备货带动显示环节备货,造成短期缺货,从三季度起各家厂商 OLED 屏价格提升。根据 Canalys 预测,全球智能手机市场 2023 年市场呈现初步复苏迹象,预计 2023 年出货量下降 5%,下跌趋势放缓。根据产业链调研,目前屏厂和终端品牌谈价情况,24Q10LED 屏价格有望持续提升。

手机 LTPO 技术升级, 24H1 或将结构性缺货

从技术差异来看,更高的屏幕刷新率、触控采样率有助于提升手机使用体验,更高刷新率也提升了功耗要求。目前小尺寸 OLED 的主要两大背板技术是 LTPS 和 IGZO, LTPO 结合了这两种技术的优点,基于 LTPS 背板,在同一个像素驱动电路中用 OxideTFT 取代部分漏电较大的 LTPSTFT,其中高迁移率的 LTPSTFT 用于驱动有机发光二极管,漏电小的 OxideTFT 用于控制开关,保留了 LTPSTFT 的驱动能力,借用 OxideTFT 低漏电流优势,实现更小驱动电流和驱动电压,更小的漏电流实现更低刷新率,从而让 OLED 的可用刷新率范围变得更广,同时降低显示屏和手机 CPU 的功耗,提升终端产品续航能力。

从市场角度来看,自 2021 年 iPhone 引入 LTPO 技术,LTPO 渗透率得到了显著提升。 CINNOResearch 数据显示,2021 年中国 OLED 智能机市场,搭载 LTPO 柔性面板的销量占比为 7%。 2023 年华为发布 Mate60 系列手机,使得搭载 LTPO 的柔性面板需求出现进一步增长。从公布的规格来看,Mate60 全系列使用了 LTPO 屏幕,一方面终端出货量增加导致华为加大上游组件的订购,一定程度上刺激了同行其他厂商因避免供给不足而增加订单,另一方面在华为的带动下,其他品牌的 LTPO 需求也在增加,品牌参与度提升将使得 LTPO 屏的应用进一步增加。除了超高端的旗舰系列,各品牌的 3000~5000 元系列,如一加的数字系列、vivo 的 iQoo 数字系列、小米的数字系列等,均规划了 LTPO 屏幕。DISCIEN 数据显示,2023 年第三季度中国智能机品牌 LTPO 屏幕的需求为 7.3kk,较上季度增加 154%。第三季度 LTPO 的屏幕需求为 10kk,环比增加 37%。整个下半年的需求高峰,占全年需求的 81%,其中华为的 LTPO 需求,占下半年整体 LTPO 需求的 55%。

图表11: 2023 年中国智能机品牌 LTPO 面板需求

供给端来看,LTPO-OLED 当前处于量产的初期,生产难度大,DISCIEN 报道称大陆面板厂 LTPO 新品良率在 50%~60%之间,良率比较低,产能占用较大。2024 年有新增产能,但新增产能放量需要半年的时间爬坡及生产磨合。例如,CSOT 的 T4 配备 15K/M 的 LTPO 产能,虽然设备时配满 15k,当需求不足时,LTPO 产能不会完全开启,会根据需求逐步释放。一方面,需求的增长使得 LTPO 的供应开始紧张,不同面板型号技术要求不同,产线难以共用,进一步加剧供应紧张。另一方面,LTPO 的增长也占用了更多模组产能,挤压 LTPS-OLED 产能,使得 OLED 整体供应处于偏紧状态,OLED 价格有望持续上涨。

二、OLED 下沉至中低端手机市场,中尺寸终端加速渗透

OLED 面板下游应用广阔,从下游应用份额占比来看,以智能手机为代表的小尺寸占据最大份额,折叠屏放量叠加品牌国产化替代,手机 OLED 需求将稳步增长。以 IT 和车载为代表的中尺寸产品也将加大对 OLED 面板的使用。从 2024 年开始,苹果将在 iPadPro 机型中推进 OLED。Omdia 预计在乐观的情况下,苹果积极采用 OLED,竞争对手跟进,移动的 PCOLED 面板的需求预计将以 34%的复合年增长率增长。OLED 大尺寸面板目前受限于技术,在使用寿命、成本等方面存在一定缺陷,因此市场渗透率较低,未来印刷法的推广使用有望为大尺寸 OLED 带来增量需求。

(1) 小尺寸: 0LED 智能手机加速渗透中低端市场,折叠屏放量拉动

随着产能增加、技术日趋成熟, OLED 面板已逐渐成为中高端智能手机的首选显示技术。手机

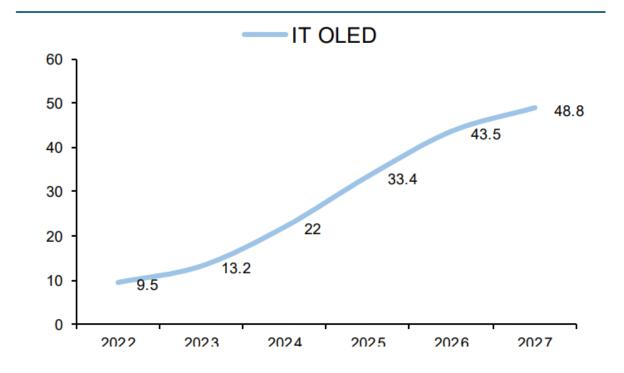
产业相对成熟,微创新及升级为各大手机品牌厂商的竞争点。终端产品追求极致屏占比,OLED 屏幕的手机可以采用屏下指纹方案,OLED 逐步成为千元以上中高端机型的首选方案,加速渗透中低端市场,应用在 1000-2000 元的机型当中。根据群智咨询统计,2023 年三季度全球智能手机面板出货约 5.1 亿片(OpenCell 口径),同比增长约 18.7%。

折叠屏手机提升 OLED 面板渗透率,产能消耗更大。随着智能手机大屏化潮流,手机屏幕折叠 化成为新的发展趋势。2018 年折叠屏手机开始进入市场,其在兼顾便携性的同时,因外形差异较大,功能优势明显等特点,成为品牌争取高端智能手机市场份额的发力点。艾瑞咨询统计数据显示,在 2023 年第一季度中国高端智能手机(售价高于 4350 元)品牌市场,苹果占据 67%的份额,而国内厂商份额达 29.70%。国内主要手机品牌厂商折叠屏手机价格明显高于直板屏手机,作为国内手机厂商冲击高端市场的利器,2024 年各大品牌厂商都将持续推出新折叠产品。

折叠屏手机形态主要分为横向折叠和竖向折叠,其中横折又可以分为外折和内折。从技术层面来看,①折叠屏手机的显示面板为 OLED,由于折叠形态的要求,折叠手机不仅使得 AMOLED 屏幕增加为原来的 3 倍,而且由于良率有待提升,预计未来折叠手机将大幅消耗 AMOLED 产能。②折叠屏手机大电池与大屏幕难两全,低功耗 LTPO 成为刚需。CounterpointResearch 预计到 2027 年全球可折叠手机出货量超过 1. 015 亿部。折叠屏手机应用的推广将进一步加大对 LTPO-OLED 面板的需求。2025 年中国 OLED 智能机市场采用 LTPO 技术的柔性 OLED 产品将超越采用 LTPS 技术的柔性 OLED 产品,渗透率有望达 43%。

另一方面,国内终端品牌加速面板供应的国产化替代。当前智能手机市场正加速适配 OLED 面板,搭载 OLED 面板的智能手机价格不断下沉。根据 Omdia 报告,OLED 面板在智能手机显示面板领域的市场份额从 2020 年的 30%已迅速增长至 2022 年的 42%。国内终端手机品牌考虑到供应链的稳定性,也纷纷实施国产化替代策略,此前,小米、OPPO、VIVO等国内手机品牌大多采用三星供应的屏幕。目前各品牌开始实行国产化替代,如 OPPOA2pro 搭载维信诺独供的 6.7 英寸 OLED 屏幕;小米 140LED 直屏 TCL 华星独供; VIVOX100 系列的 AMOLED 面板由国内面板厂维信诺和京东方供应。

(2) 中尺寸: IT 和车载渗透率有望提升,产能消耗更大


IT: IT 产品是指平板电脑、笔记本电脑、显示器等 10^2 20 英寸屏幕产品。2023 年各中尺寸终端品牌陆续推出 OLED 屏产品,2024 年苹果有望推出 OLED IPAD 进一步带动中尺寸搭载 OLED 的趋势。

平板电脑: 群智咨询预测 2023 年全球 0LED 平板电脑面板出货量预计约为 350 万片, 市场渗透率仅约 1.4%。而苹果 2024 年高阶 iPad 转用 0LED 面板, 三星、华为、荣耀等品牌高端产品线布局 0LED 技术, 将带动 0LED 技术在全球平板电脑市场的渗透率提升, 预计 2024 年全球 0LED 平板电脑

面板出货占比将提升至 5.7%。同时,得益于折叠手机的技术积累,未来折叠平板电脑产品预计也有望问世。根据群智咨询预测,2028 年全球 OLED 平板电脑面板出货占比将达到 17.9%。笔记本电脑: 2023 年终端需求低迷,OLEDNB 面板需求下滑,群智咨询预计 2023 年 OLEDNB 面板出货仅 3.6M,市场渗透率下滑至 1.9%。虽然终端应用市场情况不佳,但 OLED 技术在笔记本电脑上的应用仍在推进。一方面,终端品牌厂商加大对 OLED 面板的使用,苹果计划于 2026 年推出采用 OLED 显示面板的 MacBookPro,华硕规划 Zenbook、ProArt 等高端产品线以及 VivoBook 等主流产品线均导入 OLED 屏幕。与此同时,联想、惠普、戴尔、宏碁等众多品牌相继布局,品牌丰富度提升。另一方面,随着 OLED 面板价格下降,终端 OLEDNB 产品定价已由万元档下沉至 4000~5000 档,将由高端产品线逐渐下沉到主流产品线。群智咨询预测,2028 年 OLED 笔记本电脑的市场出货渗透率将达 21.5%。

根据 UbiResearch 预测, IT 产品用 OLED 面板出货量从 2022 年到 2027 年年均增长将达到 39%。有望从 2022 年的 950 万片增加到 2027 年的 4880 万片。

图表21: OLED IT 出货量预测 2027 年达到 4880 万片(单位:百万片)

车载:随着汽车智能化的发展,智能座舱在汽车市场快速渗透。为满足智能汽车不同的场景需求,作为人机交互界面的显示屏幕也呈现设计多元化、技术多样性的特征:抬头显示、透明 A 柱、副驾驶及后排娱乐显示、显示车窗等应用场景的衍生,使得 a-SiLCD、LTPSLCD、OxideLCD、OLED、MiniLED 背光显示、DualCell 等显示技术在车载市场应用,车载显示技术进入了多技术并存

的时代。

相比较传统的 LCD 面板,OLED 具备自发光、轻薄、高刷新率、柔性等优势,可以显著增加汽车用附加价值。技术层面,为了克服 OLED 在车用耐久性的问题,在技术上多采用 TandemOLED 技术,将多个 OLED 组件,通过连接层互相串联与叠加而形成高效率的 OLED 组件结构,串联后的 OLED,对比单层、双迭层组件达到相同亮度的电流密度为单层 1/2,寿命则至少可以提升两倍,能有效降低面板的使用功耗。成本方面,通过引入 HybridOLED 面板,利用刚性玻璃基板结合柔性 OLED 薄膜封装技术,达到减轻重量及降低成本。近年来 LGD、SDC、以及国内 BOE 等面板厂在汽车品牌不断取得项目并逐渐量产。根据 Trendforce 预测,预估 2026 年全球车用显示面板整体出货量将超 2.4 亿片,其中 OLED 面板占比有望达到 8.9%。

从细分市场来看,OLED 更适合在高端车型(售价大于 40W)进行搭载,MiniLED 目前应用区间多集中在 30W+的市场,市场有下沉趋势,LTPSLCD 主要应用车型为 10-30W,有向更高分辨率发展的趋势。汽车商将 OLED 技术视为高端搭载,OLED 正成为高档车型中控台显示器的首选。奥迪、梅赛德斯-奔驰和宝马等已经将 OLED 集成到其高端车型中。LucidMotors,Ferrari 和 Genesis 等奢侈品牌已宣布计划将 OLED 纳入其未来车型。中国汽车制造商的旗舰车型,如蔚来、理想、上汽、吉利、比亚迪等等也配备了 OLED 技术。Omdia 预测,到 2030 年,OLED 将占中控台显示器市场的9%。

从供应端来看,2022年下半年起车载显示屏需求旺盛,终端及下游供应链对面板的拉货较为积极,部分库存水位较高,2023年全球汽车市场步伐有所放缓。各大面板厂凭借自身技术、产能等优势在车载显示市场中积极布局,使得头部厂商仍保持较高的市场份额,并且依托面板资源不断拓展 Tier1 业务,打造智能座舱解决方案。

第三节 有机发光材料,国产替代正当时

未来 OLED 面板有望迎来快速发展,但我国 OLED 面板上游各环节国产化率仍有待提升。OLED 产业链的上游参与者包括 OLED 原材料、OLED 生产设备和 OLED 相关部件的供应商: OLED 原材料包括 ITO 玻璃、有机发光材料、偏光板、封合胶等; OLED 生产设备包括显影、镀膜与封装设备、检测与测试设备等; OLED 相关零部件包括驱动 IC、电路板和其他相关材料等。从 OLED 面板成本构成来看,设备和有机材料成本占比高达 35%和 23%,相关零部件中的驱动 IC、PCB 均占据了 7%的份额,原材料中的玻璃基板也占据了 6%的成本。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/98530203034
3011211