Chapter 7 Heat transfer

Evaluation of wall temperature

application

Calculating *h* (in condensation, boiling, natural convection and high viscosity situations)

Calculating heat loss, h_T

Considering heat compensation of exchanger

Helpful for selecting structure material

Ensuring product quality

Calculation by trial and error

Brief evaluation

$$T_{w} \approx t_{w} = \frac{h_{1}T_{m} + h_{2}t_{m}}{h_{1} + h_{2}}$$

where $T_m = (T_1 + T_2)/2$, $t_m = (t_1 + t_2)/2$

For a certain Q, if $1/h_1$ is small, then $T-T_w$ is also small, T closes to T_w ; if $1/h_2$ is large, then T_w-t is large and, t is quite different with T_w .

Wall temperature is close to the fluid temperature with large h.

7.7 Enhance and weaken of heat transfer

enhance

$$Q = K A \Delta t_m = \frac{\Delta t_m}{\frac{1}{K A}} \qquad K\uparrow, A\uparrow, \Delta m_{m}\uparrow R\downarrow; Q$$

a. Increasing *A* — not by large equipment size, but by improving the structure to increase area per <u>unit volume</u>.

tube with fins on surface
tube with screw surface

→ tube of small diameter when D<1000mm, if diameter $\phi 25 \rightarrow \phi 19$, the total *A* will increase more than 35%.

Coating or sintering small metal particles on the heating surface will give large area. Useful for boiling heat transfer.

Enhancement

b. Increasing K
$$\frac{1}{K_2} = \frac{d_2}{h_1 d_1} + R_{s1} + \frac{b}{k} \cdot \frac{d_2}{d_m} + R_{s2} + \frac{1}{h_2}$$

* increase fluid velocity — especially for reducing key resistance
* changing flow pattern —increase turbulence to reduce the thickness of laminar sub-layer.

- * adding solid particles —to increase turbulence and erase scaling.
- * removing scaling regularly and in time

c. Increasing $\Delta t_{\rm m}$ — use counter current

weaken of heat transfer

-heat isolation and reflection technology

Heat exchangers

Flat plate heat exchanger

1.固定压紧板 2.夹紧螺栓 3.前端板 4.换热板片 5.密封垫片 6.后端板 7.下导板 8.后支柱 9.活动压紧板 10.上导板

Advantages

Compact structure For same heat transfer area, the size and

weight is about $1/3 \sim 1/5$ of pipe-shell exchangers..

high *h* When Re>10, strong turbulent flow, *K* can achieve $3000 \sim 8000 \text{W/m}^2$.K.

≻small end temperature difference about 1°C because of the countercurrent.

>small heat loss Heat efficiency≥98%, heat isolation may not be needed.

easily adjustment

- **≻**low fluid retaining
- Iow scaling and block tendencies

Low equipment cost because of light weight

Disadvantages

- * low flow rate because of its structure
- * low operation pressure usually <2 MPa
- * low temperature because of the gasket material. Usually lower than 250°C.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/998022127005006113</u>